
Foundations of Sequential Programs

CS241

Jaiden Ratti

Prof. Chengnian Sun

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Contents

1 Lecture 1 2

2 Lecture 2 4

3 Lecture 3 6

4 Lecture 4 8

5 Lecture 5 11

6 Lecture 6 16

7 Lecture 7 20

8 Lecture 8 23

9 Lecture 9 28

10 Lecture 10 31

11 Lecture 11 33

12 Lecture 12 35

13 Lecture 13 38

14 Lecture 14 41

15 Lecture 15 44

16 Lecture 16 47

17 Lecture 17 52

18 Lecture 18 57

19 Lecture 19 62

20 Lecture 20 65

21 Lecture 21 72

22 Lecture 22 77

23 Lecture 23 82

24 Lecture 24 84

1

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

1 Lecture 1

Question

What is a sequential program?

Question

What really happens when I compile and run a program?

Question

How does a computer take code and turn it into something it can utilize?

By the end of the course, there should be very little mystery left about computers or computer programs.

High level overview of compilers

Compiler: Scans (turns into substrings) → Parses → Optimizes → Codegen {backend}

Definition 1.1

A bit is a binary digit (0 or 1)

Definition 1.2

A nibble is 4 bits (1001)

Definition 1.3

A byte is 8 bits (10011101)

Definition 1.4

A word is a machine-specific grouping of bytes. For us, a word will be 4 bytes (32-bit architecture)
though 8-byte (64-bit architecture) words are more common now.

Definition 1.5

The base-16 representation is called the hexadecimal system. It consists of the numbers from 0-9
and the letters a-f (convert the number from 10 to 15 in decimal).

The binary number 10011101 will convert to 9d in hexadecimal. Break it into 2 nibbles.

1001︸︷︷︸
9

and 1101︸︷︷︸
d

= 9d

0x9d, the 0x denotes a hexadecimal representation (or can do 9d16). A conversion table will be provided
in the exam.

Bytes as binary numbers

• Unsigned (non-negative integers)

• Signed integers

2

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Unsigned

The value of a number stored in this system is the binary sum, that is

b727 + b626 + b525 + b424 + b323 + b222 + b121 + b0 where bn is either 0 or 1

For example,

010101012 = 26 + 24 + 22 + 20 = 64 + 16 + 4 + 1 = 8510

111111112 = 25510

A byte (unsigned) can represent 256 numbers

Converting from decimal to binary:

Approach 1: Take the largest power of 2 less than n, subtract and repeat.

Approach 2: Repeatedly divide by 2

The remainder (from bottom to top) is the binary representation
N−b0

2 = b1 + 2b2 + 22b3 = 19 (when N = 38). Remainder b0 = 0

Signed Integers

Question

How do we represent negative integers?

Attempt 1: Make the first bit a signed bit. This is called the “sign-magnitude” representation.

0 represents + and 1 represents −, use the rest of the bits to create the number.

We get positive and negative zero.

(+1) 00000001 + (−1) 10000001 = (2) 10000010

Attempt 2: Two’s complement form

Similar to sign-magnitude in spirit. First bit is 0 if non-negative, 1 if negative (MSB is either −bn2n)

Negate value by just subtracting from zero and letting it overflow.

A trick to get the same thing:

• Take the complement of all bits and then add 1.

• Or, locate the rightmost 1 bit and flip all the bits to the left of it.

Decimal to Two’s Complement

Compute −3810 using one byte of space. First write 38 in binary.

0010 01102

Negate this number

1101 10102 in 2’s complement.

Two’s Complement to Decimal

To convert 110110102 to decimal, one method is to flip the bits and add 1 (or do the shortcut). Then
compute and convert positive to negative number.

Another way is to treat as unsigned and subtract

110110102 = −28 + 27 + 26 + 24 + 23 + 21 = 218 − 256 = −38

3

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

2 Lecture 2
Warmup

−15 to twos complement

15 → 00001111 (absolute value)

Convert to twos complement (shortcut)

−15 → 11110001

−1 to twos complement

1 → 00000001

Convert to twos complement (shortcut)

−1 → 11111111

128 to twos complement

128 → 10000000

−128 → 01111111

Convert to absolute value using shortcut

128 → 10000000

This is wrong. Cannot represent 128 this way (but can represent −128)

1 int abs(int a);

1 if (a >= 0) return a;
2 else return -a;

Bytes as Characters

ASCII uses 7 bits to represent characters.

Note that ‘a’ is different than 0xa. Former is the decimal number 97 in ACII, latter is the number 10 in
decimal.

1 int main() {
2 printf("%c", 48);
3 return 0;
4 }

Prints 0.

Bit-Wise Operators Suppose we have

unsigned char a = 5, b = 3

a = 5 = 0000 0101

b = 3 = 0000 0011

Bitwise not ~: negate bits (unary operator)

c =∼ a = 1111 1010

Bitwise and &: (binary operator)

c = a&b = 0000 0001

4

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Bitwise or |: (binary operator)

c = a|b = 0000 0111

Bitwise exclusive or ˆ: (binary operator)

c = aˆb = 0000 0110

Returns 1 ⇐⇒ bits are different

Bitwise shift right or left >> and << (still dealing with unsigned)

c = a >> 2 = 00000001

Discard rightmost n bits and fill left n 0′s

a
2n where n is the number of bits shifted

c = a << 3 = 00101000

Discard leftmost n bits and fill right n0′s

2n · a where n is the number of bits shifted

Question

What is a Computer Program?

Programs operate on data.

Programs are data. This is a von Neumann architecture: Programs live in the same memory space as
the data they operate on.

Programs can manipulate other programs.

We will use 32-bit MIPS in this course

CPU

• 32 general purpose registers

• Control Unit

• Memory

– Registers

– L1 cache

– L2 cache

– RAM

– Disk

– Network memory

• ALU

Registers are very fast memory.

Some general-purpose registers are special:

• $0 is always 0

• $31 is for return address

• $30 is our stack pointer

• $29 is our frame pointer

5

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Code is just data: it is stored in RAM.

MIPS takes instructions from RAM and attempts to execute them.

Recall Problem: We only know from context what bits have what meaning, and in particular, which are
instructions.

Solution: Convention is to set memory address 0 in RAM to be an instruction.

Question

Problem: How does MIPS know what to do next?

Solution: Have a special register called the Program Counter (PC) to tell us what instruction to do next.

Question

Problem: How do we put our program into RAM?

Solution: A program called a loader puts our program into memory and sets the PC to be the first
address.

Fetch-Execute Cycle

PC = 0
while true do

IR = MEM[PC] // loading the first word/instruction into IR
PC += 4 // update PC to the next instruction
Decode and execute instruction in IR // note we increment PC first

end while

This is the only program a machine really runs. This is the essence of the CPU cycle.

First Example: Addition

Write a program in MIPS that adds the values in registers $8 and $9 and stores the result in register $3

add:Add

000000ssssstttttddddd00000100000

$s = source, $t = second source, $d = destination

000000|01000|01001|00011|00000100000

Putting values in Registers

lis: Load Immediate & Skip

0000000000000000ddddd00000010100

Load value 1 into register $3

lis: (000 ... 00011 ...) load and escape to the next instruction value: 000 ... 1 (which is 1)

$d = MEM [PC]; PC += 4

3 Lecture 3
Recall Fetch-Execute Cycle

6

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

PC = 0 // mem address of next instruction
while true {

IR = MEM[PC]
PC = PC+4
Decode IR then execute

}

add: Add

000000 sssss︸ ︷︷ ︸
operand reg

ttttt︸︷︷︸
operand reg

ddddd︸ ︷︷ ︸
result

00000 10000

s = source, t = second source, d = destination

lis: Load Immediate & Skip, for putting values directly into registers.

00 . . . 0 ddddd 00 . . . 1..0

$3 = 1
0x0: 000... 00 00011 0....1..0 (d = 3)
0x4: 0000000000000000000000000000001 (value 1)

$d = MEM[PC]; PC + 4

$d = MEM[PC] // load
$3 = MEM[0x4]
PC becomes 0x8

Add values 11 and 13 and store the result in register 3.

0x0: lis 01000 //
0x4: 11 as a 32 bit word
0x8: lis 01001
0xc: 13 as a 32 bit word
0x10: add 01000 and 01001 and store in 00011

Question

How do we stop?

Operating system provides a return address in register $31.

We get to that return address via jr (Jump Register).

Multiplying two words together might give a word that requires twice as much space.

To deal with this, we use two registers: hi and lo.

hi has the leftmost 32 bits, and lo has the rightmost 32 bit.

Division performs integer division and stores the quotient in lo and remainder in hi.

hi and lo are special purpose registers: they don’t have register numbers.

mfhi and mflo are general purpose registers.

mfhi: $3 11 * $3 = hi

Larger amount of memory is stored off the CPU.

RAM access is slower than register access (but is larger).

Data travels between RAM and CPU via the bus.

Words occur every 4 bytes, starting with byte 0. Indexed by 0, 4, 8, . . . n − 4.

7

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Cannot directly use the data in the RAM. Must transfer first to the registers.

Operations on RAM.

Load word takes a word from RAM and places it into a register. Specifically, load the word in MEM[$s
+ i] and store in $t.

load $t $s(i) where $t: result reg; $s: mem address; i: 16-54 bit signed offset (number)

0x4444
lis $3 <- mem address
binary word for 4
load $3, $3(0)
// register 3 has the value in memory address 4

Load ≡ Read and Store ≡ Write

Store word takes a word from a register and stores it into RAM. Specifically, load the word in $t and
store it in MEM[$s + i].

store $0, $3(0)$
MEM[$3 + 0] = 0

Machine code is difficult to memorize and edit.

Assembly language is a text language which there is a 1-to-1 correspondence between assembly instruc-
tions and machine code instructions. This is more human-readable. Higher-level languages have a more
complex mapping to machine code.

4 Lecture 4
A string like add $3, $2, $1 is stored as a sequence of characters.

If we can break this down to meaningful chunks of information, it would be easier to translate.

[add][$3][$2][$1]

A scanner breaks strings down into tokens. Not as simple as looking for spaces, the words need to make
sense.

Scanner extracts the Kind and Lexeme

Indentifier: "sub"

int a = 241;
INT: int
Identifier: "a"
EQ: =
NUM: 241
SEMI: ";"

The string “241” has four ways to be split up.

In the C statement int x = 241; we want to interpret “241” as a single number.

Definition 4.1

Maximal munch: Always choose the longest meaningful token while breaking up the string

8

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Question

Then how do we know when to stop? There’s no limit to how long a number can be.

We need a way to wrangle infinitely many possible strings.

Definition 4.2

An alphabet is a non-empty, finite set of symbols, often denoted by Σ

Definition 4.3

A string (or word) w is a finite sequence of symbols chosen from Σ.

Definition 4.4

The set of all strings over an alphabet Σ is denoted by Σ∗

Definition 4.5

A language is a set of strings

Definition 4.6

The length of a string w is denoted by |w|

Alphabets:

Σ = {a, b, c, . . . , z} the Latin alphabet

Σ = {0, 1} the alphabet of binary digits

Σ = {0, 1, 2, . . . , 9} the alphabet of base 10 digits

Σ = {0, 1, 2, . . . , 9, a, b, c, d, e, f} hexadecimal

Strings:

ε is the empty string. It is in Σ∗ for any Σ. |ε| = 0

For Σ = {0, 1}, strings include w = 011101 or x = 1111. Note |w| = 6 and |x| = 4.

Languages:

L = ∅ or {}, the empty language

L = {ε}, the language consisting of (only) the empty string

L = {abna : n ∈ N}, the set of strings over the alphabet Σ = {a, b} consisting of an a followed by 0 or
more b characters followed by an a.

The objective of our scanner is to break a string into words in a given language.

Simpler objective: Given a language, determine if a string belongs to the language.

How hard is this? Depends on the language.

L = any dictionary: Trivial

L = {abna : n ∈ N}: Very easy

L = {Valid MIPS assembly programs }: Easy

L = {Valid Java/C/C++ programs }: Harder

9

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

L = {Set of programs that halt }: Impossible

Memberships in Languages

In order of relative difficulty:

• Finite

• Regular

• Context-free

• Context-sensitive

• Recursive

• Impossible languages

Consider the language {bag, bat, bit}.

We can just check whether a string is in the list.

Question

But can we do this in a more efficient way?

Hash Map/Set

for each w in L {
if w' = w

Accept
}

Still not the most efficient

Most efficient is to check each letter at a time and reject if it can’t be possible.

In our example, all our words start with b. If our first symbol for input is not b, we can instantly reject.
If the first symbol is b and our second is a, we can reject “bit” and keep going. Similar to prefix tree.

Important Features of Diagram

• An arrow into the initial start state

• Accepting states are two circles

• Arrows from state to state are labelled

• Error state(s) are implicit

Definition 4.7

A regular language over an alphabet Σ consists of one of the following:
1. The empty language and the language consisting of the empty word are regular
2. All languages {a} for all a ∈ Σ are regular.
3. The union, concatenation or Kleene star of any two regular languages are regular.
4. Nothing else

Let L, L1, L2 be three regular languages. Then the following are regular languages

Union: L1 ∪ L2 = {x : x ∈ L1 or x ∈ L2}

Concatenation: L1 · L2 = L1L2 = {xy : x ∈ L1, y ∈ L2}

Kleene star: L∗ = {ε} ∪ {xy : x ∈ L∗, y ∈ L} = ∪∞
n=0Ln

Suppose that L1 = {up, down}, L2 = {hill, load} and L = {a, b} over appropriate alphabets. Then

10

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

• L1 ∪ L2 = {up, down, hill load}

• L1 · L2 = {uphill, upload, downhill, download}

• L∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, . . .}

Let Σ = {a, b}. Explain why the language L = {abna : n ∈ N} is regular.

Solution: {a} and {b} are finite, and so regular. {b}∗ is also regular, regular languages are closed under
Kleene star. Then, the concatenation {a} · {b}∗ · {a} must also be regular.

In tools like egrep, regular expressions are often used to help find patterns of text. Regular expressions
are just a way of expressing regular languages.

The notation is very similar, except we drop the set notation. As examples

• {ε} becomes ε

• L1 ∪ L2 becomes L1|L2

• Concatenation is never written with the explicit ·

• Order of operations: ∗, ·, |

• ? means optional

Extending the Finite Languages Diagram

We can allow our picture to have loops.

Definition 4.8

Deterministic Finite Automata (DFA). A DFA is a 5-tuple (Σ, Q, q0, A, δ)
• Σ is a finite non-empty set (alphabet)
• Q is a finite non-empty set of states
• q0 ∈ Q is a start state
• A ⊆ Q is a set of accepting states
• δ : (Q×E) → Q is our total transition function (given a state and a symbol of our alphabet,

what state should we go to?).

5 Lecture 5
Creating Binary in C++

How do we write the binary output

0001 0100 0100 0000 1111 1111 1111 1101

bne $2, $0, -1

Convert the registers to binary bits

We can use bit shifting to put the information into the correct position.

bne opcode is 5

int instr = (5 << 26) | (2 << 21) | (0 << 16) | offset

Shift opcode 26 left, shift binary representation of register $s left 21 bits, shift binary representation of
register $t by 16 bits.

We need to be careful with the offset.

Recall in C++, ints are 4 bytes. We only want the last two bytes. First we need to apply a “mask” to
only get the last 16 bits.

int offset = -1

32-bit 000....1

11

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

32-bit 111....0 bitwise or

32-bit 111....1

This does not work since we are changing all 32 bits, we only need to change the last 16 bits.

We discard the leftmost 16 bits above.

int offset = -1 & 0xffff

Can declare the offset to be int16_t (still need to do the bit masking).

Just need to cout << instr right? Wrong.

This output would be 9 bytes, corresponding to the ASCII code for each digit of the instruction as
interpreted in decimal. We want to put the four bytes that correspond to this number.

Printing Bytes in C++

1 int instr = (5 << 26) | (2 << 21) | (0 << 16) | (-1 & 0xffff);
2 unsigned char c = instr >> 24;
3 cout << c;
4 c = instr >> 16; cout << c;
5 c = instr >> 8; cout << c;
6 c = instr; cout << c;

You can also mask here to get the “last byte” by doing & 0xff if worried about which byte will get
copied over.

Rules for DFA

States can have labels inside the bubble, this is how we refer to the states in Q.

For each character, follow the transition. If there is none, go to the implicit error state.

Once the input is exhausted, check if the final state is accepting. If so, accept. Otherwise, reject.

Warm-up Problem

Write a DFA over Σ = {a, b} that

1. Accepts only words with an even number of as

2. Accepts only words with an odd number of as and an even number of bs

3. Accepts only words where the parity of the number of as is equal to the parity of the number of bs

4. Write a DFA over Σ = {a, b} that accepts all words ending with bba.

Start

1. Accepts only words with an even number of as

Σ = {a, b}

Q = {q0, q1}

q0 is our start state

A = {q0}

q0 := even as

q1 := odd as

δ is defined by

• δ(q0, b) = q0

• δ(q0, a) = q1

• δ(q1, b) = q1

12

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

• δ(q1, a) = q0

2. Accepts only words with an odd number of as and an even number of bs

Σ = {a, b}

Q = {q0, q1, q2, q3}

q0 is our start state

A = q1

q0 := even as, odd bs

q1 := odd as, even bs

q2 := even as, odd bs

q3 := odd as, odd bs

δ is defined by:

• δ(q0, a) = q1

• δ(q0, b) = q2

• δ(q1, a) = q0

• δ(q1, b) = q3

• δ(q2, a) = q3

• δ(q2, b) = q0

• δ(q3, a) = q2

• δ(q3, b) = q1

3. Accepts only words where the parity of the number of as is equal to the parity of the number of bs

Σ = {a, b}

Q = {q0, q1, q2, q3}

q0 is our start state

A = q0, q3

q0 := even as, odd bs

q1 := odd as, even bs

q2 := even as, odd bs

q3 := odd as, odd bs

δ is defined by:

• δ(q0, a) = q1

• δ(q0, b) = q2

• δ(q1, a) = q0

• δ(q1, b) = q3

• δ(q2, b) = q0

• δ(q3, b) = q1

• δ(q2, a) = q3

• δ(q3, a) = q2

13

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

This is not the optimal solution.

Σ = {a, b}

Q = {q0, q1}

q0 is our start state

A = q0

q0 := same parity

q1 := different parity

δ is defined by:

• δ(q0, a) = q1

• δ(q0, b) = q1

• δ(q1, a) = q0

• δ(q1, b) = q0

4. Write a DFA over Σ = {a, b} that accepts all words ending with bba.

Σ = {a, b}

Q = {q0, q1, q2, q3}

q0 is our start state

A = q3

δ is defined by:

• δ(q0, a) = q0 (self loop)

• δ(q0, b) = q1

• δ(q1, b) = q2

• δ(q2, a) = q3

• δ(q1, a) = q0 (need to start over)

• δ(q2, b) = q2 (self loop)

• δ(q3, a) = q0 (start over)

• δ(q3, b) = q1 (start over but not at beginning)

Definition 5.1

The language of a DFA M is the set of all strings accepted by M , that is: L(M) = {w :
M accepts w}

w = a_1a_2...a_n
s = q_0
for i in 1 to n do

s = \delta(s,ai)
end for
if s in A then

Accept
else

Reject
end if

You could also use a lookup table.

14

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Theorem 5.2: Kleene

L is regular if and only if L = L(M) for some DFA M . That is, regular languages are precisely
the languages accepted by DFAs.

Question

Is C a regular language?

The following are regular

• C keywords

• C identifiers

• C literals

• C operators

• C comments

Sequences of these are also regular (Kleene star). Finite automata can do our tokenization.

Question

What about punctuation? Even simpler, set Σ = {(,)} and L = {strings with balanced paren-
theses}. Is L regular?

w = ()
w = (())
w = (((()))((())))

This language is not regular. It is a context-free language (more on this later).

Question

How does our scanner work?

Our goal is: Given some text, break up the text into tokens.

Some tokens can be recognized in multiple different ways.

w = 0x12cc. This could be a single hex, or could be an int followed by an (x) followed by another int
(1) followed by another int (2) and followed by an id (cc).

Formalization of this problem.

Given a regular language L (say, L is all valid MIPS or C tokens), determine if a given word w is in LL∗
(or in other words, is w ∈ L ∗ \{ε}) (we don’t consider the empty program to be valid).

Consider the language L of just ID tokens in MIPS:

Q = {q0, q1}

q0 is our start state

A = {q1}

δ is defined by:

• δ(q0, a − z, A − Z) = q1

• δ(q1, a − z, A − Z, 0 − 9) = q1

• δ (q1, ε/output token) = q0

15

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

w = abcde

Initially in q0 → q1.

Then there are two options. Either stay in q1, or return the empty token.

In this case, we would get [ID, "a"]

Go back to q0. We can do the same thing again after reaching q1 with b.

Now, we also get [ID, "b"]

We can keep doing this

This time, we want to stay in q1. We will stay in q1 for d and e. We have consumed all the symbols.

We would then output [ID, "cde"]. We now have a longer token.

6 Lecture 6
Given a regular language L, determine if a word w is in LL∗.

Two algorithms:

• Maximal munch

• Simplified maximal munch

Idea: Consume the largest possible token that makes sense. Produce the token and then proceed.

Difference:

• Maximal Munch: Consume characters until you no longer have a valid transition. If you have
characters left to consume, backtrack to the last valid accepting state and resume.

• Simplified Maximal Munch: Consume characters until you no longer have a valid transition. If you
are currently in an accepting state, produce the token and proceed. Otherwise go to an error state.

DFA for now

Σ = {a, b, c}

L = {a, b, abca}

q0 is our start state

A = {q1, q4, q5}

δ is defined by:

• δ(q0, a) = q1

• δ(q0, b) = q5

• δ(q1, b) = q2

• δ(q2, c) = q3

• δ(q3, a) = q4

Note there is a ε/output token from the accepting states to the start state.

Maximal Munch: Σ = {a, b, c}, L = {a, b, abca}, w = ababca

• Algorithm consumes a and flags this state as its accepting state. Then, b tries to consume a but
ends up in an error state.

• Algorithm then backtracks to the first a since that was the last accepting state. Token a is output.

• Algorithm then resumes consuming b and flags this state as accepting. Then, it tries to consume
a but ends up in an error state.

• Algorithm then backtracks to the first b since that was the last accepting state. Token b is output.

16

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

• Algorithm then consumes the second a, the second b, the first c, the third a, and runs out of input.
This last state is accepting, so it outputs the last token abca and accepts.

Simplified Maximal Munch: Σ = {a, b, c}, L = {a, b, abca}, w = ababca

• Algorithm consumes a, then b tries to consume a but ends up in an error state. Note there is no
keeping track of the first accepting state.

• Algorithm then checks to see if ab is accepting. It is not (as ab ̸∈ L).

• Algorithm rejects ababca.

• Note: This gave the wrong answer, but this algorithm is usually good enough and is used in
practice.

Simplified demo

a: q0 → q1 (accepting)

b : q1 → q2

a : q2 → ERROR (give error)

Consider the following C++ line:

vector<pair<string, int>> v;
Notice that at the end, there is the token >>!. This, on its own is a valid token. With either algorithm
we would reject this declaration. To do this declaration, you needed a space:

vector<pair<string, int> > v;

Question

What was the point of scanning?

Machine language is hard to write: We want to use assembly language.

We need to scan assembly lines in order to compile assembly language.

All the machine language operations we’ve seen so far, as assembly.

add $d
lis $d
.word i
jr $s
mult $s, $t
dif $s, $t
mfhi $d
mflo $d
lw $t, i($s)
sw $t, i($s)

The order of $s, $t, and $d are different in assembly than machine code.

Suppose that $1 contains the address of an array and $2 takes the number of elements in this array
(assume small enough that we don’t have to worry about overflow). Place the number 7 in the last
possible spot in the array.

17

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

lis $8
.word 0x7 // store 7 in $8
lis $9
.word 4 // store 4 in $9
mult $2, $9 // num of elements * 4
mflo $3 // move above product to $3
add $3, $3, $1 // add this offset to address
sw $8 {-}4($3) // store the value at the end
jr $31}

Question

Write an assembly language MIPS program that takes a value in register $1 and stores the value
of its last base-10 digit in register $2

lis $10
.word 10
div $1 $10
mfhi $2 // hi = remainder, lo = quotient
jr $31

MIPS also comes equipped with control statements.

beq $s, $t, i

1 if ($s == $t) {
2 PC += i * 4;
3 }

beq $s, $t, i

1 if ($s != $t) {
2 PC += i * 4;
3 }

beq $0, $0, 1 //skip 1 instruction
add $1, $2, $3
jr $31

If i == 0, doesn’t skip next instruction. If i == −1, infinite loop.

Question

Write an assembly language MIPS program that places the value 3 in register $2 if the signed
number in register $1 is odd and places the value 11 in register $2 if the number is even.

18

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

lis $8
.word 2 ; $8 == 2
lis $9
.word 3 ;$9 == 3
lis $2
.word 11 ; assume even
div $1 $8
mfhi $3
beq $3 $0 1
add $2, $9, $0
jr $31

Inequality Command

slt $d, $s, $t

Set Less Than. Sets the value of register $d to be 1 provided the value in register $s is less than the
value in register $t and sets it to be 0 otherwise.

1 if ($s < $t) {
2 $d = 1
3 } else {
4 $d = 0
5 }

Note: There is also an unsigned version of this command.

Question

Write an assembly language MIPS program that negates the value in register $1 provided its
positive.

slt $2, $1, $0 ; $1 < $0 -> $2 = 1. $1 > $0 -> $2 = 0.
bne $2, $0, 1 ; if $2 != 0, then $2 is negative
sub $1, $0, $1
jr $31

Question

Write an assembly language MIPS program that places the absolute value of register $1 in register
$2

add $2, $1, $0 ; assume $1 is positive
slt $3, $0, $1 ; 0 < $1 (if $1 > 0 -> $3 = 1) (else $3 = 0)
bne $3, $0, 1
sub $2, $0, $2 ; ($2 = -$2)
jr $31

With branching we can even do looping.

19

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Question

Write an assembly language MIPS program that adds together all even numbers from 1 to 20
inclusive. Store the answer in register $3.

lis $2
.word 20
lis $1
.word 2
add $3, $3, $0
add $3, $3, $2 ; $3 = $3 + $2
sub $2, $2, $1 ; $2 = $2 - 2
bne $2, $0, -3 ; (if not == 0, will go back to first add)
jr $31

Hard coding the −3 above isn’t good for the long run. We fix this by using a label.

label: operation commands

Explicit Example

0x0: sub $3, $0, $0
0x4: sample:
0x4: add $1, $0, $0

We can thus do

lis $2
.word 20
lis $1
.word 2
add $3, $0, $0
top:

add $3, $3, $2
sub $2, $2, $1
bne $2, $0, top

jr $31

Assembler computes the difference between the program counter and top. PC is the line number after
the current line.

7 Lecture 7
What if a procedure wants to use registers that have data already.

We could preserve registers: save and restore them.

We have lots of memory in RAM we can use. We don’t want our procedures to use the same RAM.

Used RAM goes after Free RAM.

Calling procedures pushes more registers onto the stack and returning pops them off.

We call $30 our stack pointer.

Template for Procedures

f : procedure modifies $1 and $2.

Entry: preserve $1 and $2

20

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Exit: restore $1 and $2

f:
sw $1, -4($30) ; Push registers modified
sw $2, -8($30)
lis $2 ; Decrement stack pointer
.word 8
sub $30, $30, $2
; Code
add $30, $30, $2 ; Assuming $2 is still 8
lw $2, -8($30)
lw $1, -4($30)

There is a problem with returning:

main:
lis $8
.word f ; Recall f is an address
jr $8 ; Jump to the first line of f

We get a new command jalr $s.

Jump and Link Register. Sets $31 to be the PC and then sets the PC to be $s. Accomplished by temp
= $s then $31 = PC then PC = temp.

jalr will overwrite register $31. How do we return to the loader from main after using jalr? What if
procedures call each other?

We need to save this register first.

Question

How do we pass arguments?

Typically, we’ll just use registers. If we have too many, we could push parameters to the stack and then
pop them.

Sum Evens 1 to N (assume N > 1)

21

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

; sumEvens1toN adds all even numbers from 1 to N
; Registers:
; $1 Temp Register (Should save)
; $2 Input Register (Should save)
; $3 Output Register (Do not save)

sumEvens1ToN:
sw $1, -4($30) ; Save $1 and $2
sw $2, -8($30)
lis $1
.word 8
sub $30, $30, $1 ; Decrement stack pointer
add $3, $0, $0 ; Initialize $3
lis $1
.word 2
div $2, $1 ; is N even?
mfhi $1
sub $2, $2, $1 ; Sub 1 if not
lis $1
.word 2 ; Restore 2
top:
add $3, $3, $2
sub $2, $2, $1
bne $2, $0, top
lis $1
.word 8
add $30, $30, $1 ; Restore stack pointer
lw $2, -8($30)
lw $1, -4($30) ; Reload $1 and $2
jr $31 ; Back to caller

Question

How do we print to the screen or read input?

We do this one byte at a time.

Output: Use sw to store words in location 0xffff000c. Least significant byte will be printed.

Input: Use lw to load words in location 0xffff0004. Least significant byte will be the next character
from stdin.

Print cs to the screen followed by a newline character.

lis $1
.word 0xffff000c
lis $2
.word 67 ; c
sw $2 0($1)
lis $2
.word 83 ; s
sw $2, 0($1)
lis $2
.word 10 ; \n
sw $2, 0($1)
jr $31

Let’s finish up the assembler. Language translation involves two phases: Analysis and Synthesis.

22

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Analysis: Understand what is meant by the input source. Use DFAs and maximal munch to break into
tokens. But there’s more; valid ranges, labels.

Synthesis: Output the equivalent target code in the new format

The Biggest Analysis Problem

How do we assemble this code:

beq $0, $1, myLabel
myLabel:
add $1, $1, $1

The problem is that myLabel is used before it’s defined: we don’t know the address when it’s used.

The best fix to this is to perform two passes.

Pass 1: Group tokens into instructions and record addresses of labels. (Note: multiple labels are possible
for the same line).

Pass 2: Translate each instruction into machine code. If it refers to a label, look up the associated
address and compute the value.

8 Lecture 8
Recall the definition of DFA

We can extend the definition of δ : (Q × Σ∗) → Q to a function defined over (Q × Σ∗) via:

δ∗ : (Q × Σ∗) → Q

(q, ε) → q

(q, aw) → δ∗(δ(q, a), w)

where a ∈ Σ and w ∈ Σ∗. If processing a string, process a letter first then process the rest of the string.

Definition 8.1

A DFA given by M = (Σ, Q, q0, A, δ) accepts a string w if and only if δ∗(q0, w) ∈ A

What if we allowed more than one transition from a state with the same symbol?

To make the right choice, we would need an oracle that can predict the future.

This is called non-determinism. We then say that a machine accepts a word w if and only if there exists
some path that leads to an accepting state.

We can simplify the “ends with bba” example from previous lecture to an NFA.

L = {w : w ends with bba}

Q = {q0, q1, q2, q3}

q0 is our start state

A = {q3}

Transitions

• δ(q0, a) → q0

• δ(q0, b) → q0

• δ(q0, b) → q1

• δ(q1, b) → q2

• δ(q2, a) → q3

23

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Definition 8.2

Definition Let M be an NFA. We say that M accepts w if and only if there exists some path
through M that leads to an accepting states.

The language of an NFA M is the set of all strings accepted by M , that is: L(M) = {w : M accepts w}

Definition 8.3

Definition An NFA is a 5-tuple (Σ, Q, q0, A, δ) :
• Σ is a finite non-empty set
• Q is a finite non-empty set of states
• q0 ∈ Q is a start state
• A ⊆ Q is a set of accepting states
• δ : (Q × Σ) → 2Q is our total transition function. Note that 2Q denotes the power set of Q,

that is, the set of all subsets of Q. This allows us to go to multiple states at once

We can extend the definition of δ : (Q × Σ) → 2Q via:

δ∗ : (2Q × Σ∗) → 2Q

(S, ε) 7→ S

(S, aw) 7→ δ∗

 ⋃
q∈S

δ(q, a), w

where a ∈ Σ. We also have:

Definition 8.4

Definition An NFA given by M = (Σ, Q, q0, A, δ) accepts a string w if and only if δ∗({q0}, w)∩A ̸=
∅

Using the NFA defined earlier (bba) process abbba

w = abbba

S = {q0}

Process a

S =
⋃

q∈{q0} δ(q, a)

= δ(q0, a) = {q0} (self-loop is the only option) S = {q0}

Process b

S =
⋃

q∈{q0} δ(q, b)

= δ(q0, b) = {q0, q1} (two options) S = {q0, q1}

Process b

S =
⋃

q∈{q0,q1} δ(q, b) = δ(q0, b) ∪ δ(q1, b)

= {q0, q1} ∪ {q2}

= {q0, q1, q2} S = {q0, q1, q2}

Process b

S =
⋃

q∈{q0,q1,q2} δ(q0, b) ∪ δ(q1, b) ∪ δ(q2, b)

= {q0, q1} ∪ {q2} ∪ ∅

24

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

= {q0, q1, q2} S = {q0, q1, q2}

Process a

S =
⋃

q∈{q0,q1,q2} δ(q0, a) ∪ δ(q1, a) ∪ δ(q2, a)

= {q0} ∪ ∅ ∪ {q3}

= {q0, q3} S ∩ A = S ∩ {q3} = {q0, q3} = {q3}

Thus the input string is accepted by the NFA.

Question

Why are NFAs not more powerful than DFAs?

Even the power-set of a set of states is still finite. We can represent the set of states in the NFA as single
states in the DFA.

Algorithm to convert from NFA to DFA.

• Start with the state S = {q0}

• From this state, go to the NFA and determine what happens on each a ∈ Σ for each q ∈ S. The
set of resulting states should become its own state in your DFA.

• Repeat the previous step for each new state created until you have exhausted every possibility.

• Accepting states are any states that included an accepting state of the original NFA.

Previous NFA as a DFA.

Σ = {a, b}

S0 = {q0}

A = {q3}

Transitions (for DFA)

• δD(S0, a) = {q0} = S0

• δD(S0, b) = {q0, q1} = S1

• δD(S1, a) = S0

• δD(S1, b) = δ({q0}, b) ∪ δ({q1}, b) = {q0, q1} ∪ {q2} = {q0, q1, q2} = S2

• δD(S2, a) = {q0, q3} = S3

• δD(S2, b) = S2

• δD(S3, a) = S0

• δD(S3, b) = S1

States in our DFA S0 = {q0} S1 = {q0, q1} S2 = {q0, q1, q2} S3 = {q0, q3}

Example.
Let Σ = {a, b, c} Write an NFA such that L = {w : w does not contain ac}

Σ = {a, b, c}

not ending with a = q0 is our start state

Q = {q0, q1}

ending with a = q1

A = {q0, q1}

25

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Transitions:

• δ(q0, b) → q0

• δ(q0, c) → q0

• δ(q0, a) → q1

• δ(q1, a) → q1

• δ(q1, b) → q0

Example.
Let Σ = {a, b, c} Write an NFA such that L = {abc} ∪ {w : w ends with cc}

Σ = {a, b, c}

First element of union

A = {q3}

Q = {q0, q1, q2, q3}

q0 is our start state

Transitions

• δ(q0, a) → q1

• δ(q1, b) → q2

• δ(q2, c) → q3

• Second element of union

A = {q2}

Q = {q0, q1, q2}

q0 is our start state

Transitions

• δ(q0, a) → q0

• δ(q0, b) → q0

• δ(q0, c) → q0

• δ(q0, c) → q1

• δ(q1, c) → q2

Question

How do we combine these?

Q = {q0, , q1, q2, q3, q4, q5, q6}

A = {q3, q6}

Transitions

• δ(q0, a) → q1

• δ(q1, b) → q2

• δ(q2, c) → q3

• δ(q0, a, b, c) → q4

• δ(q4, a, b, c) → q4

26

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

• δ(q4, c) → q5

• δ(q0, c) → q5

• δ(q5, c) → q6

The DFA is complicated. Note: Combining two languages is non-obvious.

Summary: From Kleene’s theorem, the set of languages accepted by a DFA are the regular languages.
The set of languages accepted by DFAs are the same as those accepted by NFAs. Therefore, the set of
languages accepted by an NFA are precisely the regular languages.

Question

What if we permitted state changes without reading a character.

These are known as ε transitions.

Definition 8.5

An ε-NFA is a 5-tuple(Σ, Q, q0, A, δ)
• Σ is a finite non-empty set that does not contain the symbol ε
• Q is a finite non-empty set of states
• q0 ∈ Q is a start state
• A ⊆ Q is a set of accepting states
• δ : (Q × Σ ∪ {ε}) → 2Q is our total transition function

These ε-transitions make it trivial to take the union of two NFAs.

Q = {q0, q1, q2, q3, q4, q5, q6, q7}

A = {q4, q7}

Transitions:

• δ(q0, ε) → q1

• δ(q0, ε) → q5

• δ(q1, a) → q2

• δ(q2, b) → q3

• δ(q3, c) → q4

• δ(q5, a, b, c) → q5

• δ(q5, c) → q6

• δ(q6, c) → q7

Extending δ for an ε-NFA

Define E(S) to be the epsilon closure of the set of states S, that is, the set of all states reachable from
S in 0 or more ε transitions.

Note, this implies that S ⊂ E(S)

Again we can extend the definition of δ : (Q × Σ ∪ {ε}) → 2Q to a function δ∗ : (2Q × Σ∗) → 2Q via:

δ∗ : (2Q × Σ∗) → 2Q

(S, ε) 7→ E(S)

(S, aw) 7→ δ∗

 ⋃
q∈S

E(δ(q, a)), w

where a ∈ Σ. We also have

27

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Definition 8.6

Definition An ε-NFA given by M = (Σ, Q, q0, A, δ) accepts a string w if and only if δ∗(E{q0}, w)∩
A ̸= ∅

9 Lecture 9
Recall from last lecture:

Extending δ for an ε-NFA

S : a set of state S ⊆ Q

a ∈ Σ, w ∈ Σ∗

ϵ-NFA: S : (Q × (Σ ∪ {ε})) → 2Q

δ∗(2Q × Σ∗) → 2Q

δ∗(S, ϵ) = E(S)

δ∗(S, aw) = δ∗(
⋃

q∈S E(δ(q, a)), w)

Simulating an ε-NFA

Let E(S) be the epsilon closure of a set of states S. Recall S ⊂ E(S)

w = a1a2 . . . an

S = E({q0})

S =
⋃

q∈S δ(q, ai)

if S ∩ A ̸= ∅ then Accept

Otherwise Reject

Example.
q0 is the start state

Q = {q0, q1, q2, q3, q4, q5, q6, q7}
A = {q4, q7}
Transitions:
• δ(q0, ε) → q1
• δ(q0, ε) → q5
• δ(q1, a) → q2
• δ(q2, b) → q3
• δ(q3, c) → q4
• δ(q5, a, b, c) → q5
• δ(q5, c) → q6
• δ(q6, c) → q7
Take the string w = abcaccc
S = E({q0} = {q0, q1, q5}
S = E(δ(q0, a) = ∅ ∪ δ(q1, a) = {q2} ∪ δ(q5, a) = {q5})
S = {q2, q5}

28

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Example.
q0 is the start state

Q = {q0, q1, q2}
A = {q2}
Transitions:
• δ(q0, a) → q1
• δ(q1, a, b) → q1
• δ(q1, ε) → q2
• δ(q2, c) → q0
This machine represents the regular language a(a|b)∗

Take the string w = abca
S = E({q0}) = {q0} “a”
S = E(δ(q0, a)) = E({q1}) = {q1, q2}
Next symbol
S = {q1, q2} “b”
S = E(δ(q1, b) ∪ δ(q2, b)) = E({q1} ∪ ∅) = {q1, q2} since q2 is available form q1 via ε transitions.
Next symbol
S = {q1, q2} “c”
S = E(δ(q1, c) ∪ δ(q2, c)) = E(∅ ∪ {q0}) = {q0}
Last symbol
S = {q0} “a”
S = E(δ(q0, a)) = E({q1}) = {q1, q2}
Since {q1, q2} ∩ {q2} ≠ ∅, accept.

DFA ≡ NFA ≡ ε-NFA ≡ Regular ≡ Regular Expression

If we can show that an ε-NFA exists for every regular expression, then we have proved one direction of
Kleene’s. We can do this by structural induction.

Regular Language

NFA that recognizes ∅

A = {}

q0 is our start state

Q = {q0}

NFA that recognizes {ε}

A = {q0}

q0 is our start state

Q = {q0}

NFA that recognizes {a}

A = {q1}

q0 is our start state

Q = {q0, q1}

Transitions:

• δ(q0, a) → q1

NFA that recognizes union L1 ∪ L2

Connect start state q0 with first state of L1 and L2 via ε

NFA that recognizes concatenation L1L2

Connect start state q0 to start state of L1 with ε transition. Connect the final state in L1 with the first
state in L2 via ε transition.

29

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

NFA that recognizes L∗

From the accepting state of L, draw a ε transition back to start state and (accepting state) q0. q0 has a
ε transition to the beginning of L.

We have completed Scanning. Now onto syntax.

Motivating Example:

Consider Σ = {(,)} and L = {w : w is a balanced string of parentheses}

Question

Is this language regular? Can we build a DFA for L?

No.

Consider the regular attempt:

(???)|ε

The ??? is the problem. What goes inside the parentheses is the entire language of matched parentheses.
What if we could recurse in regular expressions?

L = (L)|ε (Note: this just covers (((. . .))), not e.g., ()()(()))

In terms of power, context-free languages are exactly regular languages plus recursion. In terms of
expression, rather than extend regular expressions, we have a different form called grammars.

Definition 9.1

Definition Grammar is the language of languages.

Grammars help us describe what we ware allowed and not allowed to say. Context-free grammars are a
set of rewrite rules that we can use to describe a language.

CFG for C++ has a lot of recursion.

Definition 9.2

Definition A Context Free Grammar (CFG) is a 4 tuple (N, Σ, P, S) where
• N is a finite non-empty set of non-terminal symbols
• Σ is an alphabet; a set of non-empty terminal symbols.
• P is a finite set of productions, each of the form A → β where A ∈ N and β ∈ (N ∪ Σ)∗

• S ∈ N is a starting symbol

Note: We set V = N ∪ Σ to denote the vocabulary, that is, the set of all symbols in our language.

Conventions:

Lower case letters from the start of the alphabet, i.e., a, b, c, . . ., are elements of Σ.

Lower case letters from the end of the alphabet, i.e., w, x, y, z, are elements of Σ∗ (words)

Upper-case letters, i.e., A, B, C, . . ., are elements of N (non-terminals)

S is always our start symbol.

Greek letters, i.e., α, β, γ, . . ., are elements of V ∗ (recall this is (N ∪ Σ)∗)

In most programming languages, the terminals of the context-free languages are the tokens, which are
the words in the regular language.

This is why scanners categorize tokens (e.g. all infinity IDs are “ID”): so that the CFL’s alphabet is
finite.

It is possible to define CFGs directly over the input characters: this is called scannerless.

30

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Let’s revisit Σ = {(,)} and L = {w : w is a balance string of parentheses}

S → ε, S → (S), S → SS

We can also write this using a shorthand: S → ε|(S)|SS

Find a derivation of (()()). Recall our CFG above.

Definition 9.3

Over a CFG (N, Σ, P, S), we say that. . .
• A derives γ and we write A =⇒ γ if and only if there is a rule A → γ in P .
• αAβ =⇒ αγβ if and only if there is a rule A → γ in P .
• α =⇒ γ if and only if a derivation exists, that is, there exists δi ∈ C∗ for 0 ≤ i ≤ k such

that α = δ0 =⇒ δ1 =⇒ . . . =⇒ δk = γ. Note that k can be 0.

Solution:

S =⇒ (S) =⇒ (SS) =⇒ ((S)S) =⇒ (()S) =⇒ (()(S)) =⇒ (()()) Hence, S =⇒ (()())

Question

Why Context-Free?

Context-free languages actually add a sort of context to regular languages, so why are they “context
free”?

They’re free of a different sort of context. For instance, a context-free language can’t catch this:

1 int a;
2 (*a) + 12;

Need the context that a is an int to know that this isn’t allowed.

Definition 9.4

Define the language of a CFG (N, Σ, P, S) to be L(G) = {w ∈ Σ∗ : S =⇒ w}

Definition 9.5

A language is context-free if and only if there exists a CFG G such that L = L(G)

Every regular language is context-free.

1. ∅ : ({S}, {a}, ∅, S)

2. {ε} : ({S}, {a}, S → ε, S)

3. {a} : ({S}, {a}, S → a, S)

4. Union: {a} ∪ {b} : ({S}, {a, b}, S → a|b, S)

5. Concatenation: {ab} : ({S}, {a, b}, S → ab, S)

6. Kleene Star: {a}∗ : ({S}, {a}, S → Sa|ε, S)

10 Lecture 10
Practice

Let Σ = {a, b}. Find a CFG for each of the following

31

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

• {anbn : n ∈ natural numbers}

CFG: S → ε|aSb

Derivation:

S =⇒ aSb =⇒ aaSbb =⇒ aaaSbbb =⇒ aaabbb

• Palindromes over {a, b, c}

S → ε|a|b|aSa|bSb|cSc

• a(a|b) ∗ b

S → aTb

T → MT |ε

M → a|b

A fundamental example

Let’s consider arithmetic operations over Σ = {a, b, c, +, −, ∗, /, (,)} Find

• A CFG for L1: arithmetic expressions from Σ without parentheses, and a derivation for a − b.

• A CFG for L2: Well-formed arithmetic expressions from Σ with balanced parentheses, and a
derivation for ((a) − b).

L1: Expression without parentheses

S → a|b|c|SRS

R → +| − | ∗ |/

w = a − b

S =⇒ SRS =⇒ aRS =⇒ a − S =⇒ a − b

L2: Expression with parentheses

S → a|b|c|(SRS)

R → +| − | ∗ |/

w = ((a)) − b)

S =⇒ (SRS) =⇒ ((SRS)RS) =⇒ ((aRS)RS) ̸ =⇒ ((a) − b) This does not work. Instead, we need

S → a|b|c|SRS|(S)

R → +| − | ∗ |/

S =⇒ (S) =⇒ (SRS) =⇒ ((S)RS) =⇒ ((a)RS) =⇒ ((a) − S) =⇒ ((a) − b) Notice, in these two
derivations that we had a choice at each step which element of N to replace.

• S =⇒ SRS =⇒ aRS =⇒ a − S =⇒ a − b

• S =⇒ (S) =⇒ (SRb) =⇒ (S − b) =⇒ (a − b)

Leftmost derivation: In the first derivation, we chose to do a left derivation, that is, one that always
expands from the left first.

Rightmost derivation: In the second derivation, we chose to do a right derivation, that is, one that always
expands from the right first.

Parse Trees

w = aaabbb

S → ε|aSb S =⇒ aSb =⇒ aaSbb =⇒ aaaSbbb =⇒ aaaεbbb =⇒ aaabbb

32

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Question

Is it possible for multiple leftmost derivations (or multiple rightmost derivations) to describe the
same string?

Consider two leftmost derivations for w = a − b ∗ c.

S =⇒ SRS =⇒ aRS =⇒ a − S =⇒ a − SRS =⇒ a − bRS =⇒ a − b ∗ S =⇒ a − b ∗ c

S =⇒ SRS =⇒ SRSRS =⇒ aRSRS =⇒ a − SRS =⇒ a − bRS =⇒ a − b ∗ S =⇒ a − b ∗ c

Definition 10.1

A grammar for which some word has more than one distinct leftmost derivation/rightmost deriva-
tion/parse tree is called ambiguous.

Question

Why do we care about this?

As compiler writers, we care about where the derivation came from: parse trees give meaning to the
string with respect to the grammar.

Post-order traversal of trees pseudocode.

1 t: TreeNode
2 int evaluate(t: Tree) {
3 for each child in t {
4 v_i = evaluate(child)
5 }
6 values of children
7 return compute(values)
8 }

We use some sort of precedence heuristic to guide the derivation process.

Or, make the grammar unambiguous. This is what we did without first (incomplete) L2 (by adding
parentheses).

11 Lecture 11
There is a better way to eliminate ambiguity.

In a parse tree, we evaluate the expression in a depth-first, post-order traversal.

We can make a grammar left/right associative by crafting the recursion in the grammar.

Forcing Right Associative

S → LRS|L

L → a|b|c

R → +| − | ∗ |/

This forces a right-associative grammar (for a − b ∗ c, b ∗ c will evaluate first)

Forcing Left Associative

S → SRL|L

33

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

L → a|b|c

R → +| − | ∗ |/

This forces a left-associative grammar (recurses to the left).

We can use this to create a grammar that follows BEDMAS (by making ∗, / appear further down the
tree).

S → SPT |T

T → TRF |F

F → a|b|c|(S)

P → +|−

R → ∗|/

Question

If L is a context-free language, is there always an unambiguous grammar such that L(G) = L?

No. This was proven by Rohit Parikh in 1961.

Question

Can we write a computer program to recognize whether a grammar is ambiguous?

No.

Question

Given two CFGs G1 and G2, can we determine whether L(G1) = L(G2). What about determining
whether L(G1) ∩ L(G2) = ∅?

This is still undecidable.

We use parsers to handle CFLs and CFGs.

Formally: Given a CFG G = (N, Σ, P, S) and a terminal string w ∈ Σ∗, find the derivation, that is, the
steps such that S =⇒ . . . =⇒ w or prove that w ̸∈ L(G)

We can find this with two broad ideas (top-down and bottom-up).

Top down parsing: Start with S and then try to get to w.

Bottom-up Parsing: Start with w and work our way backwards to S.

Top-Down Parsing

Start with S and look for a derivation that gets us closer to w. Then, repeat with remaining non-terminals
until we’re done.

The main trick is “look” for derivation. Thus, the core problem is to predict which derivation is right.

We present the LL(1) algorithm (in practice, real compliers do not use this).

Here is the pseudocode for a top-down parsing algorithm (before having the knowledge of a predictor
table)

1 push S
2 for each 'a' in input do
3 while top of stack is A in N do
4 pop A

34

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

5 ask an oracle to tell you which production A -> \gamma to use
6 push the symbols in \gamma (rtl)
7 end while
8 // TOS is terminal
9 if TOS is not 'a' then

10 Reject
11 else
12 pop 'a'
13 end if
14 end for
15 Accept

This has some problems.

1. The oracle is not real

2. When we reach the end of input, we have no way of realizing we weren’t done with the stack

3. The oracle should be able to tell us that no production matches at all

12 Lecture 12
We augment the grammar to begin and end with ⊢ and ⊣ to solve problem 2.

S′ → ⊢ S ⊣

S → LRS|L

S → a|b|c

R → +| − | ∗ |/

We treat these symbols as BOF and EOF characters.

Now let’s solve problem 1 and 3.

This oracle could try all possible productions (way too expensive).

Solution: Use a single symbol lookahead to determine where to go. (This is a heuristic, doesn’t always
work).

We construct a predictor table to tell us where to go: given a non-terminal on the stack and a next input
symbol, what rule should we use?

Always looking at a terminal input symbol, so figuring out how they match is non-trivial.

But this is hard. Consider the following

0. S′ → ⊢ S ⊣

1. S → LRS

2. S → L

3. L → a|b|c

4. R → +| − | ∗ |/

How could we decide between 1 and 2 based on the next symbol? They both start with L, which is the
same non-terminal, so either can start with a, b, or c.

This is a limitation of the top-down parsing algorithm.

We will look at a simpler grammar.

0. S′ → ⊢ S ⊣

1. S → LRS

35

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

2. S → L

3. L → a|b

4. R → +|−

Let’s look at w = ⊢ a + b + c ⊣

0. S′ → ⊢ S ⊣

1. S → LM

2. L → I

3. M → OS

4. M → ε

5. I → a

6. I → b

7. O → +

8. O → −

Predictor Table of the simple grammar above.

⊢ ⊣ a b + −
S′ 0
S 1 1
L 2 2
M 4 3
I 5
O 7 8

Table 1: Predictor Table

If in the non-terminal on the left, and encounter the terminal symbol on the top, pick the option of the
number (see grammar above). Pop the elements that match the input string and repeat until we have
finished (or encounter an error).

Definition 12.1

A grammar is called LL(1) if and only if each cell of the predictor table contains at most one
entry.

For an LL(1) grammar, don’t need sets in our predict table.

Question

Why is it called LL(1)?

First L: Scan left to right

Second L: Leftmost derivations

Number of symbol lookahead: 1

Not all grammars work with top-down parsing. Our simple grammar from above is not LL(1) since more
than one value is in a cell in the predictor table.

Constructing the Lookahead Table

Our goal is the following function, which is our predictor table.

Predict(A, a) : production rule(s) that apply when A ∈ N is on the stack, a ∈ Σ is the next input
character.

36

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

To do this, we also introduce the following function, First(β) ⊆ Σ: First(β): set of characters that can
be the first symbol of a derivation starting from β ∈ V ∗.

β =⇒ . . . =⇒ ar. Thus, a ∈ First(β)

More formally:

Predict(A, a) = {A → β : a ∈ First(β)}

First(β) = {a ∈ Σ : β =⇒ ay, for some y ∈ V ∗}

Example of First

Recall the grammar from above with 8 steps.

First (⊢ S ⊣) = {⊢}

First (LM) = First(L) = First(I) = {a, b}. So to compute First(LM) we first need First(I).

First (I) = {a, b}

First (OS) = First (O) = {+, −}

First (ε) = {}

First (a) = {a}

First (b) = {b}

First(+) = {+}

First (−) = {−}

The problem with Predict(A, a) = {A → β : β =⇒ . . . =⇒ ay, for some β, y ∈ V ∗} is that it is possible
that A =⇒ . . . =⇒ ε. This would mean that the a didn’t come from A but rather some symbol after
A.

Example S′ =⇒ . . . =⇒ ⊢ abc ⊣

0. S′ → ⊢ S ⊣

1. S → AcB

2. A → ab

3. A → ff

4. B → def

5. B → ef

6. B → ε

Notice that S′ =⇒ ⊢ S ⊣ =⇒ ⊢ AcB ⊣ =⇒ ⊢ abcB ⊣ =⇒ ⊢ abc ⊣

In the top-down parsing algorithm, we reach ⊢ abcB ⊣ the stack is ⊣ B and remaining input is ⊣.

We look at Predict(B, ⊣) which is empty since ⊣̸∈ First(B). Thus we reach an error.

We augment our predict table to include the elements that can follow a non-terminal symbol, if it can
reduce to ε.

In this case, we need to include that ⊣∈ Predict(B, ⊣)

To correct this, we introduce two new functions.

Nullable(β): boolean function; for β ∈ V ∗ is true if and only if β =⇒ . . . =⇒ ε

Follow(A): for any A ∈ N , this is the set of elements of Σ that can come immediately after A in a
derivation starting from S′

37

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Definition 12.2

We say that a β ∈ V ∗ is nullable if and only if Nullable(β) = true

Example of Follow

0. S′ → ⊢ S ⊣

1. S → AcB

2. A → ab

3. A → ff

4. B → def

5. B → ef

6. B → ε

Follow(S′) = {} (Always)

Follow(S) = {⊣}

Follow(A) = {c}

Follow(B) = {⊣}

Question

What happens with Predict(A, a) if Nullable(A) = false?

Follow(A) is still some set of terminals but it won’t be relevant since we would need to consider what
happens to First(A) first.

Thus, the Follow function only matters if Nullable is true.

This motivates the following correct definition of our predictor table:

Definition 12.3

Predict(A, a) = {A → β : a ∈ First(β)} ∪ {A → β : Nullable(β) and a ∈ Follow(A)}

This is the full, correct definition. Notice that this still requires that the table only have one member of
the set per entry to be useful as a deterministic program.

Note that Nullable(β) = false whenever β contains a terminal symbol.

Further, Nullable(AB) = Nullable(A) ∧ Nullable(B)

Thus, it suffices to compute Nullable(A) for all A ∈ N .

13 Lecture 13
Algorithm of Nullable(A)

1 Initialize Nullable(A) = false for all A \in N'
2 repeat
3 for each production in P do:
4 if (P is A -> \varepsilon) or
5 (P is A -> B_1 ... B_k
6 and \wedge_{i=1}^{k} Nullable(B_i) = true) then
7 Nullable(A) = true

38

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

8 end if
9 end for

10 until nothing changes

Example of Nullable

0. S′ → ⊢ S ⊣

1. S → c

2. S → QRS

3. Q → R

4. Q → d

5. R → ε

6. R → b

Nullability Table

Iter 0 1 2 3
S′ F F F F
S F F F F
Q F F T T
R F T T T

Table 2: Nullability Table

Thus, Nullable(S′) = Nullable(S) = F and Nullable(Q) = Nullable(R) = T

Notes about First

Main idea: Keep processing B1, B2, . . . , Bk from a production rule until you encounter a terminal or a
symbol that is not nullable. Then go to the next rule. Repeat until no changes are made during the
processing.

Remember, ε, isn’t a real symbol, and can’t be in a First set.

For First, we will ignore trivial productions of the form A → ε based on the above observation.

Further, First(S′) = {⊢} always.

We first compute First(A) for all A ∈ N and then we compute First(β) for all relevant β ∈ V ∗

Computing First

1 Initialize First(A) = {} for all A \in N'
2 repeat
3 for each rule A -> B_1B_2 ... B_k in P do
4 for i in {1,..., k} do
5 if B_i in T' then
6 First(A) = First(A) \cup {B_i}; break
7 else
8 First(A) = First(A) \cup First(B_i)
9 if Nullable(B_i) == False then break

10 end if
11 end for
12 end for
13 until nothing changes

39

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Example of First

0. S′ →⊢ S ⊣

1. S → c

2. S → QRS

3. Q → R

4. Q → d

5. R → ε

6. R → b

First Table

Iter 0 1 2 3
S′ {} {⊢} {⊢} {⊢}
S {} {c} {b, c, d} {b, c, d}
Q {} {d} {b, d} {b, d}
R {} {b} {b} {b}

Table 3: First Table

Recall, Nullable(S′) = Nullable(S) = F and Nullable(Q) = Nullable(R) = T

Thus, First(S′) = {⊢}, First(S) = {b, c, d}, First(Q) = {b, d}, First(R) = {b}

Computing First (2)

1 result = {}
2 for i \in {1,...,n} do
3 if B_i \in T' then
4 result = result \cup {B_i}; break
5 else
6 result = result \cup First(B_i)
7 if Nullable(B_i) == False then break
8 end if
9 end for

Computing Follow

1 Initialize Follow(A) = {} for all A \in N
2 repeat
3 for each production A -> B_1 B_2 ... B_k in P' do
4 for i \in {i, ..., k} do
5 if B_i \in N then
6 Follow(B_i) = Follow(B_i) \cup First(B_{i+1} ... B_k)
7 if \wedge_{m=i+1}^{k} Nullable(B_m) == True or i == k then
8 Follow(B_i) = Follow(B_i) \cup Follow(a)
9 end if

10 end if
11 end for
12 end for
13 until nothing changes

Example of Follow

40

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

0. S′ → ⊢ S ⊣

1. S → c

2. S → QRS

3. Q → R

4. Q → d

5. R → ε

6. R → b

Follow Table

Iter 0 1 2
S {} {⊢} {⊢}
Q {} {b, c, d} {b, c, d}
R {} {b, c, d} {b, c, d}

Table 4: Follow Table

14 Lecture 14
Cheat sheet

Nullable:

• A → ε implies that Nullable(A) = true. Further Nullable(ε) = true

• If A → B1 . . . Bn and each of Nullable(Bi) = true then Nullable(A) = true

First:

• A → αα then a ∈ First(A)

• A → B1 . . . Bn then First(A) = First(A) ∪ First(Bi) for each i ∈ {1, . . . , n} until Nullable(Bi) is
false

• A → αBβ then Follow(B) = First(β)

• A → Bβ and Nullable(β) = true, then Follow(B) = Follow(B) ∪ Follow(A)

Primary Issue

With this grammar:

S → S + T S → T T → T ∗ F

T → F

F → a|b|c|(S)

The primary issue is that left recursion is at odds with LL(1). In fact, left recursive grammars are always
not LL(1). Examine the derivations for a and a + b.

S =⇒ S + T =⇒ T + T =⇒ F + T =⇒ a + T =⇒ a + bS =⇒ T =⇒ F =⇒ a

Notice that they have the same first character but required different starting rules from S. That is
{1, 2} ⊆ Predict(S, a). Our first step is to at least make this right recursive.

To make a left recursive grammar right recursive; say

A → Aα|β

where β does not begin with the non-terminal A, we remove this rule from our grammar and replace it
with:

A → βA′

41

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

A′ → αA′|ε

The above solves our issue

S → TZ ′

Z ′ → +TZ ′|ε

T → FT ′

T ′ → ∗FT ′|ε

F → a|b|c|(S)

we get a right-recursive grammar. This is LL(1).

However: recall that we didn’t want these grammars, because they were right associative. This is an
issue we need to resolve with new techniques.

Not all right right recursive grammars are LL(1). Consider

S → T + S

S → T

T → F ∗ T

T → F

F → a|b|c|(S)

we get a right-recursive grammar, but not LL(1)

S =⇒ T + S =⇒ F + S =⇒ a + S =⇒ a + T =⇒ a + bS =⇒ T =⇒ F =⇒ a

Again, we have {1, 2} ⊆ Predict(S, a). There is still hope, we can apply a process known as factoring.

Left factoring

Idea: If A → αβ1| . . . αβn|y where α ̸= ε and y is representative of other productions that do not begin
with α, then we can change this to the following equivalent grammar by left factoring:

A → αB|y

B → β1| . . . |βn

Recursive-Descent Parsing

Fixing the parse trees from right-recursive and left-factored grammars is the #1 thing that recursive-
descent ad hoc solutions fix

The actual sequence of steps is LL(1), but then they generate a different parse tree by changing it on
the fly.

Bottom-up Parsing

Recall: Determining the αi in S =⇒ α1 =⇒ . . . =⇒ w

Idea: Instead of going from S to w, let’s try to go from w to S. Overall idea: look for the RHS of a
production, replace it with the LHS. When you don’t have enough for a RHS, read more input. Keep
grouping until you reach the start state.

Our stack this time will store the αi in reverse order (Contrast to top-down which stores the αi in order)

Our invariant here will be Stack + Unread Input = αi (Contrast to top-down where invariant was
consumed input + reversed Stack contents = αi)

1 for each symbol a in the input from left to right do
2 // ask an oracle whether to shift, reduce, or reject,
3 // and with which production to reduce (if we reduce)
4 while the oracle tells us to reduce with some B -> \gamma do

42

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

5 stack.pop symbols in \gamma
6 stack.push B
7 end while
8 if the oracle told us to reject then
9 reject

10 end if
11 stack.push a
12 end for
13 accept

Example.
Recall our grammar:

S′ → ⊢ S ⊣ (0)
S → AcB (1)
A → ab (2)
A → ff (3)
B → def (4)
B → ef (5)

We wish to process w = ⊢ abcdef ⊣

Stack Read Processing Action
ε ⊢ abcdef ⊣ Shift ⊢

⊢ ⊢ abcdef ⊣ Shift a
⊢ a ⊢ a bcdef ⊣ Shift b
⊢ ab ⊢ ab cdef ⊣ Reduce (2); pop b, a, push A
⊢ A ⊢ ab cdef ⊣ Shift c
⊢ Ac ⊢ abc def ⊣ Shift d
⊢ Acd ⊢ abcd ef ⊣ Shift e
⊢ Acde ⊢ abcde f ⊣ Shift f

⊢ Acdef ⊢ abcdef ⊣ Reduce (4); pop f, d, e push B
⊢ AcB ⊢ abcdef ⊣ Reduce (1); pop B, c, A push S

⊢ S ⊢ abcdef ⊣ Shift ⊣
⊢ S ⊣ ⊢ abcdef ⊣ ε Reduce (0); pop ⊣ S, ⊢ push S′

S′ ⊢ abcdef ⊣ ε Accept

Theorem 14.1

For any grammar G, the set of viable prefixes (stack configurations), namely {αa : α ∈ V ∗ is a
stack a ∈ Σ is the next character ∃x ∈ Σ∗ such that S =⇒ . . . =⇒ αax} is a regular language,
and the NFA accepting it corresponds to items of G. Converting this NFA to a DFA gives a
machine with states that are set of valid items for a viable prefix.

We will show how to use this theorem to create a LR(0), SLR(1), and LR(1) automata to help us accept
the words generated by a grammar.

Consider the following context-free grammar:

S′ → ⊢ S ⊣ (0)

S → S + T (1)

S. → T (2)

T. → d (3)

43

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Definition 14.2

An item is a production with a dot · somewhere on the right hand side of a rule

Items indicate a partially completed rule. We will begin in a state labelled by the rule S′ → · ⊢ S ⊣

That dot is called the bookmark

LR(0) Construction

From a state, for each rule in the state, move the dot forward by one character. The transition function
is given by the symbol you jumped over.

For example, with S′ → · ⊢ S ⊣, we move the · over ⊢. Thus, the transition function will consume the
symbol ⊢.

The state we end up in will contain the item S′ → ⊢ ·S ⊣

In the new state, if the set of items we have ·A for some non-terminal A, we then add all rules with A
in the left-hand side of a production with a dot preceding the right-hand side.

In this case, this state will include the rules S → ·S + T and S → ·T .

Notice now we also have ·T and so we also need to include the rules where T is the left-hand side, adding
the rule T → ·d.

If we find ourselves at a familiar state, reuse it instead of remaking it.

We continue with these steps until there are no bookmarks left to move. Then we have the final DFA.

We skipped the ε−NFA step by putting all these items in the same rule. You may see versions of this
algorithm that involve building an ε−NFA and then converting, but the result will be the same.

Back to the example

S′ → ⊢ S ⊣ (0)

S → S + T (1)

S. → T (2)

T. → d (3)

This automaton is our oracle. Run the stack through the automaton, and:

• If you end up in a state with the bookmark at the right-hand side of an item, perform that reduction

• If you end up in a state with the bookmark elsewhere, shift

• Else (error state), reject

15 Lecture 15
w =⊢ d + d + d ⊣

Stack Read Processing Action
ε ⊢ d + d + d ⊣ Shift state 0

⊢ ⊢ d + d + d ⊣ State 1 Shift
⊢ d ⊢ d +d + d ⊣ State 5 reduce(3), pop d, push T
⊢ T ⊢ d +d + d ⊣ State 4 reduce(2), pop T, push S
⊢ S ⊢ d +d + d ⊣ State 2, shift

⊢ S ⊣ ⊢ d+ d + d ⊣ State 6, shift
⊢ S + d ⊢ d + d d ⊣ State 5, reduce (3), pop d, push T
⊢ S + T ⊢ d + d +d ⊣ State 7, reduce(1) pop S and T, push S

⊢ S

44

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

The stack is a stack, so the bottom of the stack (beginning of our input) doesn’t usually change. We’re
rerunning the whole DFA even when the prefix of our stack is the same. Because of this, our algorithm
is O(n2).

Remember how we moved through the DFA in a state stack, and push and pop to the state stack at the
same time as the symbol stack. That way, we don’t repeat getting to a state with a prefix that hasn’t
changed.

This brings us to O(n).

Stack column above becomes Symbol Stack

LR(0)

1 stateStack.push q_0
2 for each symbol a in EOF x BOF from left to right do
3 while Reduce[stateStack.top] is some production B -> \gamma do
4 symStack.pop symbols in \gamma
5 stateStack.pop |\gamma| states
6 symStack.push B
7 stateStack.push \delta[stateStack.top, B]
8 end while
9 symStack.push a

10 reject if \delta[stateStack.top, a] is undefined
11 stateStack.push \delta[stateStack.top, a]
12 end for
13 accept

State Stack Symbol Stack Read Processing Action
q0 ε ⊢ d + d + d ⊣ Shift state 0
q0, q1 ⊢ ⊢ d + d + d ⊣ State 1 Shift
q0, q1, q5 ⊢ d ⊢ d +d + d ⊣ State 5 reduce(3), pop d, push T
q0, q1, q4 ⊢ T ⊢ d +d + d ⊣ State 4 reduce(2), pop T, push S

⊢ S ⊢ d +d + d ⊣ State 2, shift
⊢ S ⊣ ⊢ d+ d + d ⊣ State 6, shift

⊢ S + d ⊢ d + d d ⊣ State 5, reduce (3), pop d, push T
⊢ S + T ⊢ d + d +d ⊣ State 7, reduce(1) pop S and T, push S

⊢ S ⊢ abcdef

Possible Issues

Issue one (Shift-Reduce): What if a state has two items of the form:

• A → α · aβ

• B → γ·

Question

Should we shift or reduce?

Note, having two items that shift, e.g.:

• A → α · aβ

• B → γ · bδ

is not an issue.

45

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Definition 15.1

A grammar is LR(0) if and only if after creating the automaton, no state has a shift-reduce or
reduce-reduce conflict.

Recall that LL(1) grammars were at odds with recursive languages.

Question

Are LR(0) grammars in conflict with a type of recursive language?

Not usually. Bottom-up parsing can support left and right recursive grammars. However not all gram-
mars are LR(0) grammars.

Consider the grammar

S′ → ⊢ S ⊣

S → T + S

S. → T

T. → d

New LR(0) Automaton

Conflict

State 4 has a shift-reduce conflict.

Suppose the input began with ⊢ d. This gives a stack of ⊢ d and then we reduce in state 5, so our stack
changes to ⊢ T and we move to state 4 via state 1.

Should we reduce S → T? It depends.

We add a lookahead to the automation to fix the conflict. For every A → α∗, attack Follow(A). Recall:

S′ → ⊢ S ⊣

S → T + S

S. → T

T. → d

Note that Follow(S)= {⊣} and Follow(T) = {+, ⊣}. So state 4 becomes

S → T · +S and S → T · : {⊣}

Apply S → T · +S if the next token is +, and apply S → T · {⊣} if the next token is ⊣.

With lookahead from Follow sets on reduce states, we call these parses SLR(1) parsers.

SLR(1) is not a simplified version of LR(1), it’s just different.

Building the Parse Tree

With top-down parsing, when we pop S from the stack and push B, y and A : S is a node, make the new
symbols the children.

With bottom-up parsing, when you reduce A → ab (from a stack with a and b). You then keep these
two old symbols as children of the new node A.

A Last Parser Problem

Most famous problem in parsing: the dangling else.

if(a) if (b) S1: else S2

46

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

1 if (a) {
2 if (b) {
3 S1;
4 }
5 } else {
6 S2;
7 }

1 if(a) {
2 if (b) {
3 S1;
4 } else {
5 S2;
6 }
7 }

16 Lecture 16
Where are we now?

We have finished syntactic analysis, are now on to type checking (semantic analysis).

Semantics: Does what is written make sense?

Not everything can be enforced by a CFG. Examples

• Type checking

• Declaration before use

• Scoping

• Well-typed expressions

To solve these, we can move to context-sensitive languages.

As it turns out, CSL’s aren’t a very useful formalism.

We already needed to give up many CFGs to make a parser handle CFLs; with CSLs, it would be even
worse.

As such, we treat context-sensitive analysis as analysis (looking over the parse tree generated by CFL
parsing) instead of parsing (making its own data structure).

• pre-order tree traversal

• post-order tree traversal

• hybrid of the two

We will traverse our parse tree to do our analysis.

We still need to check for:

• Variables declared more than once

• Variables used but not declared

• Type errors

• Scoping as it applies to the above

47

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Declaration errors

Question

How do we determine multiple/missing declaration errors?

We’ve done this before. We construct a symbol table.

• Traverse the parse tree for any rules of the form dcl → type ID.

• Add the ID to the symbol table

• If the name is already in the table, give an error.

1 int foo(int a) {
2 int x = 0;
3 return x + a;
4 }
5

6 int wain(int x, int y) {
7 return foo(y) + x;
8 }

Checking

To verify that variables have been declared. Check for rules of the form factor → ID, and lvalue → ID.
If ID is not in the symbol table, produce an error. The previous two passes can be merged.

def: dcl → type ID (make sure not already in symbol table, and add to symbol table)

Use of variables:

factor → ID (check to see if it is in symbol table (return error if not))

lvalue → ID (check to see if it is in symbol table (return error if not))

Question

With labels in MIPS in the assembler, we needed two passes. Why do we only need one in the
compiler?

We need to declare variables before using them. This is not true for labels.

Note that in the symbol table, we should also keep track of the type of variables. Why is this important?
Just by looking at the bits, we cannot figure out what it represents. Types allow us to interpret the
contents.

Good systems prevent us from interpreting bits as something we should not.

For example

1 int *a = NULL;
2 a = 7;

should be a type mismatch.

This is just a matter of interpretation.

In WLP4, there are two types: int and int* for integers and pointers to integers.

For type checking, we need to evaluate the types of expressions and then ensure that the operations we
use between types corresponds correctly.

48

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Question

If given a variable (in the wild), how do we determine it’s type?

Use its declaration. Need to add this to the symbol table.

We can use a global variable to keep track of the symbol table:

1 enum class Type {INT, POINTER};
2 unordered_map<string, Type> symbolTabel; // name->type

Some things can go wrong. This doesn’t take scoping into account. Also need something for function-
s/declarations.

Consider the following code. Is there an error?

1 int foo(int a) {
2 int x = 0;
3 return x + a;
4 }
5 int wain(int x, int y) {
6 return foo(y) + x;
7 }

No. Duplicate variables in different procedures are okay.

Is the following an error?

1 int foo(int a) {
2 int x = 0;
3 return x + a;
4 }
5 int wain(int a, int b) {
6 return foo(b) + x;
7 }
8

Yes. The variable x is not in scope in wain.

Is the following an error?

1 int foo(int a) {
2 int x = 0;
3 return x + a;
4 }
5 int foo(int b) {return b;}
6 int wain (int a, int b) {
7 return foo(b) + a;
8 }

Yes. We have multiple declarations of foo.

We resolve this with a separate symbol table per procedure. We also need a global symbol table.

49

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Question

A symbol table is a map, what are we mapping each symbol to?

For type checking, we need to know the type of each symbol. In WLP4, a string could be sufficient, but
you should use a data structure so you can add more later.

Question

What about procedures?

Procedures don’t have types, they have signatures.

In WLP4, all procedures return int, so we really just need the argument types: an array of types.

1 int foo(int x, int y)
2 // (int, int) -> int
3 int bar(int *x, int y, int c)
4 // (int*, int, int) -> int

Computing the signature.

Simply need to traverse nodes in the parse tree of these forms.

• params →

• params → paramlist

• paramlist → dcl

• paramlist → dcl COMMA paramlist

This can be done in a single pass.

Consider

1 int foo(int a) {
2 int x = 0;
3 return x + a;
4 }
5 int wain(int *a, int b) {
6 return foo(b) + a;
7 }

Global symbol table:

• foo: [int], wain: [int*, int]

Local symbol tables:

• foo: a: int, x: int

• wain: a: int*, b: int

Type errors

Question

What are type errors and how to find them?

Two separate issues:

50

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

• What are type errors? (Definition)

• How to find them? (Implementation)

Definition of Type (Errors)

Need a set of rules to tell us

• The type of every expression

• Whether an expression makes sense with the types of its subexpressions

• Whether a statement makes sense with the types of its subexpressions

Detection of Type (Errors)

There’s really only one algorithm with a tree: traverse the tree. Implement a (mostly) post-order traversal
that applies defined rules based on which expressions it encounters.

Inference rules are Post rules (like in CS245)

If an ID is declared with type τ then it has this type:

(id.name, τ) ∈ declarations
id.name : τ

Numbers have type int: NUM: int

NULL is of type int*: NULL: int*

Inference rules for types

Inference rules are the true case. If no inference rule matches, that means the expression or statement
doesn’t type check: type error.

Look for good, not for bad: errors should always be the “else” case.

Parentheses do not change the type E:τ
(E):τ

The Address of an int is of type int* E:int
&E:int*

1 int x = 0;
2 int *p = NULL;
3 p &x; // int*

Dereferencing int* is of type int E:int*
∗E:int

1 x = *p // int

If E has type int then new int[E] is of type int* E:int
new int[E]: int*

1 p = new int[*p] // int*

Arithmetic Operations

Multiplication E1:int E2:int
E1∗E2:int

Division E1:int E2:int
E1/E2:int

Module E1:int E2:int
E1%E2:int

51

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Addition

E1 : int E2 : int
E1 + E2 : int

E1 : int* E2 : int
E1 + E2 : int*

E1 : int E2 : int*
E1 + E2 : int*

Subtraction

E1 : int E2 : int
E1 − E2 : int

E1 : int* E2 : int
E1 − E2 : int*

E1 : int* E2 : int*
E1 − E2 : int

Procedure Calls:

(f, τ1, . . . , τn) ∈ declarations E1 : τ1 E2 : τ2 . . . En : τn

f(E1, . . . , En) : int

The basic kind of statement type is an expression statement. An expression statement is okay as long as
the expression has a type. We will need rules for all the other statements too. Statement’s don’t have a
type, but can be “well typed”.

17 Lecture 17
Control statements:

1 while (T) {S}
2 if (T) {S_1} else {S_2}

The value of T above should be a boolean. But WLP4 doesn’t have booleans.

Our grammar forces it to be a boolean expression, so we don’t need to check that.

But, we still need to check its subexpressions.

Inference rules for well-typed
E1:τ E2:τ

well-typed(E1<E2)

E1:τ E2:τ
well-typed(E1>E2)

E1:τ E2:τ
well-typed(E1==E2)

E1:τ E2:τ
well-typed(E1<=E2)

E1:τ E2:τ
well-typed(E1>=E2)

E1:τ E2:τ
well-typed(E1=E2)

52

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

An if statement is well-typed if and only if all of its components are well typed
well-typed(T) well-typed(S1) well-typed(S2)

well-typed(if(T)else{S2})

A while statement is well-typed if and only if all of its components are well-typed
well-typed(T) well-typed(S)

well-typed(while(T){S})

There is a final sanity check with the left- and right-hand sides of an assignment statement.

Given an expression, say x = y, notice the left-hand side and the right-hand side represent different
things.

The left-hand side represents a place to store data; it must be a location of memory. The right-hand
side must be a value; that is, any well-typed expression.

Anything that denotes a storage location is an lvalue.

Consider the following two snippets of code

1 int x = 0;
2 x = 5;

This is okay; the lvalue x is a storage location.

1 int x = 0;
2 5 = x;

This is not okay; the lvalue 5 is an integer and not a storage location.

For us, lvalues are any of variable names, dereferenced pointers and any parenthetical combinations of
these. These are all forced on us by the WLP4 grammar so the checking is done for you.

The empty sequence is well-typed well-typed()

Consecutive statements are well-typed if and only if each statement is well-typed
well-typed(S1) well-typed(S2)

well-typed(S1;S2)

Procedures are well-typed if and only if the body is well-typed and the procedure returns an int.
well-typed(S) E:int

well-typed(intf(dcl1,...,dcln){dclsSreturnE;})

Type-checking recommendations

• Brush up on recursion. Everything from this point on is traversing a tree.

Example.
Type-check a tree. We will use the code from last time.

1 int foo(int a) {
2 int x = 0;
3 return x + a;
4 }
5 int wain(int *a, int b) {
6 return foo(b) + a;
7 }

1 void check(ParseTreeNode *)
2 post-order

53

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Infer types for sub expressions using the rules.

Find three distinct one-character changes that make this code fail to type-check (while still passing
parsing):

1 int wain(int a, int b) {
2 return a + b;
3 }

Change int a to int* a.

Change return a + b; to return *a + b.

Change return a + b to return &a + b.

There are infinitely many equivalent MIPS programs for a single WLP4 program.

Question

Which should we output?

Correctness is most important. We seek a simplistic solution. Efficiency to compile and efficiency of the
code itself.

Real compilers have an intermediate representation (IR) that’s close to assembly code but (at least) has
infinite registers. This IR is good for optimization. We don’t do optimization, we we won’t use IR.

Our step of generating assembly will be (more-or-less) the “generate IR” step of a larger compiler. MIPS
is our IR.

1 int wain(int a, int b) {
2 return a;
3 }

Recall our mips.twoints convention that registers $1 and $2 store the input values, and our usual
convention to return in register $3.

add $3, $1, $0
jr $31

Question

How did we know where a was stored? What if we had > 2 arguments? What if we had done
something complex with intermediary results?

The parse tree will be the same if we’d done return b instead of return a.

The parse tree isn’t going to be enough to determine the difference between the two pieces of code.

Question

How can we resolve this? How can we distinguish between these two codes?

We use the symbol table.

Symbol Type Location
a int $1
b int $2

54

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

1 int wain(int a, int b) {return a;}

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
lw $3, 4($30)
add $30, $30, $4
add $30, $30, $4
jr $31

We make the convention that $4 always contains the number 4.

Instead of the symbol table storing registers, it should store the offset from the stack pointer.

Symbol Type Location
a int 4
b int 0

Offset from stack pointer will cause problems.

Variables also have to go on the stack but we don’t know what the offsets should be until we process all
of the variables and parameters.

For example

1 int wain(int a, int b)
2 { int c = 0; return a; }

Code generated

lis $4
.word 4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
sw $0, -4($30) ; For int c = 0
sub $30, $30, $4
lw $3, 8($30) ; Offset changed due to presence of c!
...
jr $31

As we process the code, we need to be able to compute the offset as we see the values. Also, we need to
handle intermediate values of complicated arithmetic expressions by storing on the stack.

Symbol Type Location
a int 8
b int 4
c int 0

How then do we arrange it so that when we see the variable, we know what the offset is? Remember
that the key issue here is that $30 (the top of the stack) changes.

Reference the offset from the bottom of the stack frame. We will store this value in $29. This is called
the “frame pointer”.

55

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

If we calculate offsets from $29, then no matter how far we move the top of the stack, the offsets from
$29 will be unchanged.

lis $4
.word 4
sub $29, $30, $4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
sw $0, -4($30)
sub $30, $30, $4
lw $3, 0($29) ; Offset always 0 from $29
...
jr $31

Symbol Type Location
a int 0
b int -4
c int -8

What about a more complicated program?

1 int wain(int a, int b) {
2 return a - b;
3 }

Question

How do we handle this?

When a and b were in registers, we could just subtract them. Now we need to load them, then subtract
them.

Load them into registers? We’ll run out of registers again with more complicated behaviour.

We’ll continue to use $3 for the result of any expression. Also use $5 for intermediate scratch values.

lis $4
.word 4
sub $29, $30, $4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
lw $3, 0($29) ; a
add $5, $3, $0 ; Move a to $5
lw $3, -4($29) ; b
sub $3, $5, $3 ; a -b
... ; restore stack
jr $31

Question

Where does this approach break down?

56

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Consider something like a + (b − c). Would need to load a, load b, load c, compute b − c, then compute
the answer. This would require a third register.

Question

Where should we store these values instead?

On the stack again.

Abstraction: We’ll use some shorthand for our code

code(x) represents the generated code for x.

code(a): (where a is a variable) lw $3, N($29)

push($x):

sw $x, -4($30)
sub $30, $30, $4

pop($x):

add $30, $30, $4
lw $x, -4($30)

code (a-b):
code(a) +
push($3) +
code(b) +
pop($5) +
sub $3, $5, $3

18 Lecture 18
Let’s compute the MIPS code for

1 int wain(int a, int b) {
2 int c = 3;
3 return a + (b - c);
4 }

Solution

57

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

lw $3, 0($29) ; a
sw $3, -4($30) ; push($3)
sub $30, $30, $4
lw $3, -4($29) ; b
sw $3, -4($30) ; push($3)
sub $30, $30, $4
lw $3, -8($29) ; c
add $30, $30, $4 ; pop($5)
lw $5, -4($30)
sub $3, $5, $3 ; b – c
add $30, $30, $4 ; pop($5) l
w $5, -4($30)
add $3, $5, $3

We can generalize this technique so we only need two registers for any computation. (Divide and conquer).

Singleton grammar productions are relatively straightforward to translate:

code(S -> BOF procedures EOF): code(procedures)

code(expr -> term): code(term)

lvalues are odd. Recursion might do the wrong thing.

The basic idea of our code function is that it produces the code to put the value of the expression in $3.

lvalues shouldn’t actually generate values.

If we have { int x = 0; x = 3; }, having the code for x in x=3 generate 0 would be useless.

We could have the code function do something different for lvalues

code(lvalue -> anything) produces an address in $3 instead of its value.

Or, we could have the code function for expressions that include lvalues do something different based on
the kind of lvalue.

code(stmt -> (lvalue -> ID) BECOMES expr SEMI) has to be distinct from code(stmt->(lvalue ->
STAR expr) BECOMES expr SEMI).

This code is less modular and less maintainable (not recommended).

We have two ways of outputting and one way of inputting: println, putchar, getchar.

Character I/O corresponds directly to memory-mapped I/O addresses:

code(putchar(expr);) =
code(expr) +
lis $5 +
.word 0xffff000c +
sw $3, 0($5)

code(getchar()) =
lis $5 +
.word 0xffff0004 +
lw $3, 0($5)

println is more complex than getchar or putchar.

What do we generate for stmt -> PRINTLN LPAREN expr RPAREN SEMI.

We had to write MIPS code to do this, but that would be a lot of code to generate each time.

A compiler mixes the code it outputs with code from a runtime environment

58

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Definition 18.1

A runtime environment is the execution environment provided to an application or software by
the operating system to assist programs in their execution. Such an environment may include
things such as procedures, libraries, environment variables etc.

MERL files. MIPS Executable Relocatable Linkable. Format for object files. MERL helps us store
additional information needed by the loader and linker from output.

We will now need to do

1 ./wlpgen < source.wlp4ti > source.asm
2 cs241.linkasm < source.asm > source.merl
3 cs241.merl source.merl print.merl > exec.mips

gcc and clang are not compilers, they are compiler drivers. They call other programs to compile, assemble,
and link code.

To use print, we need to add .import print to the BOF.

After this we can use print in our MIPS code. It will print the contents of $1.

code(println(expr);) = push($1)
+ code(expr)
+ add $1, $3, $0
+ push ($31)
+ lis $5 + .word print
+ jalr $5 + pop($31)
+ pop($1)

We will write Baby’s First Operating System

repeat:
p <- next program to run
read the program into memory at address 0x0
jalr $0
beq $0, $0, repeat

Where should this be stored? Could choose different addresses at assembly time, but how do we make
sure they don’t conflict.

A more flexible option is to make sure that code can be loaded anywhere.

Loader’s job:

• Take a program P as input

• Find a location α in memory for P

• Copy P to memory, starting at α

• Return α to OS

Baby’s First OS v2

59

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

repeat:
p <-- choose program to run
$3 <--- loader(p)
jalr $3
beq $0, $0, repeat

loader
a <-- findFreeRAM(N)
for (i = 0; i < codeLength; ++i) {

mem[a+4i] = file[i];
}
$30 <-- a + N
return a to OS

Question

How did we assemble .word label?

It compiles to an address; the address of that label assuming that the program was loaded at 0. Loader
needs to fix this.

More problems

.word id: need to add alpha to id

.word constant: do not relocate

beq bne (whether they use labels or not): do not relocate

We translate assembly code into machine code (bits). Given: 0x00000018, is this .word 0x18 or .word
id? We can’t know.

Thus, we need a way for our loader to know what does and what doesn’t need to be relocated. We need
to remember which .words were labels.

In our MERL files we need the code, but also the location of any .word ids.

lis $3
.word 0xabc
lis $1
.word A
jr $1
B: jr $31
A:
beq $0, $0, B
.word B

MERL would be

60

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

beq $0, $0, 2
.word end Module
.word endCode

lis $3
.word 0xabc
lis $1
reloc1: .word A ; different
jr $1
B:
jr $31
A:
beq $0, $0, B
reloc2: .word B ; different

endCode:
.word 1
.word reloc1
.word 1
.word reloc2
endModule:

Loading requires two passes:

Pass 1: Load the code from the file into the selected location in memory.

Pass 2: Using the relocation table, update any memory addresses that have relocation entries.

Even with this, it is possible to write code that only works at address 0:

lis $2
.word 12
jr $2
jr $31

We should never encode address as anything other than labels, so that your loader can update the
references.

1 read_word // skip first word in MERL file
2 endMod ← read_word() // second word is address of end of MERL
3 codeSize ← read_word() - 12 // compute size of code
4 a ← findFreeRam(codeSize)
5

6 for (int i = 0; i < codeSize; i+=4) { // load program
7 MEM[a + i] ← read_word()
8 }
9 i ← codeSize + 12 // start relocation of table

10 while (i < endMod) {
11 format ← read_word()
12 if (format == 1) {
13 rel ← read_word() //relocate address
14 MEM[a + rel - 12] += a - 12 // go forward by a but back by 12
15 } else {
16 ERROR // unknown format type
17 }

61

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

18 i += 8 // update to next entry
19 }

19 Lecture 19
Most of our statements have been completed (except for if and while).

We need to handle boolean tests for conditionals. Convention is to store 1 inside of $11.

Code structure

; Prologue
lis $4
.word 4
lis $10
.word print
lis $11
.word 1
sub $29, $30, $4
; end Prologue

add $30, $29, $4
jr $31

Question

What is the code for the rule test → exprA < exprB?

code(expr_A)
+ push($3)
+ code(expr_B)
+ pop($5)
+ slt $3, $5, $3

For test → exprA > exprB we change slt $3, $5, $3 to slt $3, $3, $5.

Translate test → exprA != exprB .

code(expr_A)
+ push($3)
+ code(expr_B)
+ pop($5)
; maybe store $6 and $7 if used
+ slt $6, $3, $5
+ slt $7, $5, $3
; Note 0 <= $6 + $7 <= 1
+ add $3, $6, $7

Now for test → exprA == exprB?

The key idea is a == b is the same as !(a != b).

We have ! by adding the line sub $3, $11, $3 to flip 0 to 1 and vice versa.

For test → exprA ≤ exprB by using the fact that a ≤ b is the same as !(a > b)

Rule: statement → IF (test) {stmts 1} ELSE {stmts 2}

62

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

code (statement) = code(test)
+ beq $3, $0, else
+ code(stmts 1)
+ beq $0, $0, endif
+ else: code(stmts 2)
+ end if:

If we have multiple if statements, the label names will conflict.

We need a way of inventing totally unique label names.

We can keep track of how many if statements we have. Keep a counter ifcounter.

Each time we have an if statement, increment this counter.

Use label names like else# and endif# where # corresponds to the ifcounter.

Rule: statement → WHILE (test) {statements}

code(statement) = loop: code(test)
+ beq $3, $0, endWhile
+ code(stmts)
+ beq $0, $0, loop
+ endWhile:

Since we are generating MIPS code; we can also generate comments with MIPS code. Debugging code
generators is hard.

Recap

• $0 is always 0

• $1 and $2 are for arguments 1 and 2 in wain

• $3 is always for output

• $4 is always 4

• $5 is always for intermediate computations

• $6 and $7 may be for intermediate computations

• $10 will store print

• $11 is reserved for 1

• $29 is our frame pointer (fp)

• $30 is our stack pointer (sp)

• $31 is our return address (ra).

Prologue

At the beginning of the the code, we

• Load 4 into $4 and 1 into $11

• Import print. Store in $10

• Store the return address on the stack

• Initialize the frame pointer hence creating a stack frame

• Store registers 1 and 2

Body

Need to store local variables in the stack frame. Contain MIPS code corresponding to the WLP4 program.

Epilogue

63

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Need to pop the stack frame. Also need to restore the previous variables.

We have reached pointers. We need to support all the following

• NULL

• Allocating and deallocating heap memory

• Dereferencing

• Address-of

• Pointer arithmetic

• Pointer comparisons

• Pointer assignments and pointer access

NULL cannot be the value 0x0 it is a valid memory address. We want our NULL to crash in attempt to
dereference. We pick a NULL that is not word-aligned (not a multiple of 4). So we can pick 0x1.

code(factor → NULL) =
add $3, $0, $11

Question

What about dereferencing?

factor1 → STAR factor2

The value in factor2 is a pointer (otherwise a type error). We want to access the value at factor2 and
load it somewhere.

We load into $3. Since factor2 is a memory address, we want to load the value in the memory address
at $3 and store in $3.

code(factor_1 → STAR factor_2) =
code(factor_2) + lw $3, $0($3)

Need to be careful of the difference between lvalues and pointers.

Recall that an lvalue is something that can appear as the LHS of an assignment rule. We can have a
rule factor → AMP lvalue. Suppose we have an ID value a. How do we find out where a is in memory?

We use our symbol table. We can load the offset first and then use this to find out the location.

Comparisons of pointers work the same as with integers with one exception. Pointers cannot be negative,
so slt is not what we want to use. We should use sltu instead.

Given test → expr COMP expr how can we tell which of slt or sltu to use? We check the type of
exprs.

Recall for addition and subtraction we have several contracts. The code for addition will vary based
on the type of its subexpressions. For int + int or int - int, we proceed as before. This leaves 4
contracts we need to consider that use pointers.

Addition expr_1 → expr_2 + term where type(expr_2) == int* and type(term) == int

64

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

code(expr_1) = code(expr_2)
+ push($3)
+ code(term)
+ mult $3, $4
+ mflo $3
+ pop($5)
+ add $3, $5, $3

expr_1 → expr_2 + term where type(expr_2) == int and type(term) == int*

code(expr_1) = code(expr_2)
+ mult $3, $4
+ mflo $3
+ push($3)
+ code(term)
+ pop($5)
+ add $3, $5, $3

Subtraction

expr_1 → expr_2 - term where type(expr_2) == int* and type(term) == int

code(expr_1) = code(expr_2)
+ push($3)
+ code(term)
+ mult $3, $4
+ mflo $3
+ pop($5)
+ sub $3, $5, $3

expr_1 → expr_2 - term where type(expr_2) == int* and type(term) == int*

code(expr_1) = code(expr_2)
+ push($3)
+ code(term)
+ pop($5)
+ sub $3, $5, $3
+ div $3, $4
+ mflo $3

20 Lecture 20
We need to handle calls such as new and delete

We can outsource this work to the runtime.

Prologue Additions

.import init

.import new

.import delete

The command init initializes the heap. Must be called at the beginning. Takes a parameter in $2 and
initializes data structure.

New

65

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

• Finds the number of new words needed as specified in $1

• Returns a pointer to memory of beginning of this many words in$3 if successful (otherwise places
0 in $3)

code(new int[expr]) = code(expr)
+ add $1, $3, $0
+ call(new)
+ bne $3, $0, 1
+ add $3, $11, $0

Delete

• Requires that $1 is a memory address to be deallocated

code(delete [] expr) = code(expr)
+ beq $3, $11, skipDelete
+ add $1, $3, $0
+ call(delete)
+ skipDelete:

We need to now deal with multiple function calls.

Question

Who should save which registers? The caller? The callee? What do functions need to update/ini-
tialize? How do we update our symbol table?

Question

What do we need to do for wain?

Import print, init, new, delete

Initialize $4, $10, $11

Call init

Save $1, $2

Reset stack

Call jr $31

For general procedures we don’t need any imports. But we need to update $29, save registers, restore
registers and stack and jr $31

Question

Who is responsible for saving and restoring registers?

Definition 20.1

The caller is a function f that calls another function g

Definition 20.2

The callee is a function g that is being called by another function f

66

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Our current convention:

• Caller needs to save $31. Otherwise we lose the return address (to, e.g., the loader) once we
compute our call to jalr

• Callee has been saving registers it will modify and restore at the end. The function f shouldn’t
be worried about which registers g might be using. This makes sense as well from a programming
point of view.

• Note that we have only used registers from $1 to $7 (and registers $4, $10, $11 are constant) as
well as registers $29, $30, and $31.

• $30 is preserved through symmetry

Question

Who should save $29?

Assume that we will require that the callee will save $29. Thus they will initialize $29 first:

g: sub $29, $30, $4

and then g saves registers. Is this the right order to do things in?

If we save registers first, $29 is supposed to point to the beginning of the stack frame, but $30 has
already changed to store all registers. This is fine for now, but $29 might be pointing to somewhere in
the middle of the stack frame.

Having $29 in the middle is annoying since we will need it later. We choose to make $29 the bottom.

Therefore, we do:

push($29)
add $29, $30, $0
;push other registers

This callee-save approach with $29 will work.

Caller-save approach: We could have the caller save $29

push($29)
push($31)
lis $5
.word g
jalr $5
pop($31)
pop($29)

This is much easier (we are going to do this).

Must be careful where everything is relative to $29.

Procedures:

We need to store the arguments to pass to a function.

For factor → ID(expr1, ..., exprn), we have

67

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

code(factor) = push($29) + push($31)
+ code(expr1) + push($3)
+ code(expr2) + push($3)
+ ...
+ code(exprn) + push($3)
+ lis $5
+ .word ID
+ jalr $5
+ pop n times (pop all regs)
+ pop($31) + pop($29)

For procedure → int ID(params) {dcls stmts RETURN expr;} we have

code(procedure) = ID: sub $29, $30, $4
+ ; Save regs here?
+ code(dcls); local vars
+ ; OR save regs here?
+ code(stmts)
+ code(expr)
+ pop regs ; restore saved
+ add $30, $29, $4
+ jr $31

Question

When do we save registers? Before code(dcls) or after?

Saving them before is strange.

Stack

$30
local vars of g frame of g
saved regs of g frame of g

$29 args of g frame of f
$31 frame of f
$29 frame of f

Symbol Table Revisited

int g(int a, int b) { int c = 0; int d;}

Symbol table for g looks like

Symbol Table Offset (from $29)
a int 8
b int 4
c int ???
d int ???

Let’s try pushing the registers after pushing the declarations.

For procedure -> int ID(params) {dcls stmts RETURN expr;}

68

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

code(procedure) = ID: sub $29, $30, $4
+ code(dcls)
+ push regs
+ code(stmts)
+ code(expr)
+ pop regs
+ add $30, $29, $4
+ jr $31

New stack

$30
saved regs of g frame of g
local vars of g frame of g

$29 args of g frame of f
$31 frame of f
$29 frame of f

Symbol Table Revisited Revisited

int g(int a, int b) {int c = 0; ind d;}

Symbol Table Offset (from $29)
a int 8
b int 4
c int 0
d int -4

Parameters should have positive offsets. Local variables should have non-positive offsets.

Symbol table should have added 4 · num(params) to each entry in the table.

This complicates pushing registers, because we’re now generating some code before we preserve register
values.

Does this matter for us? No, because our declarations are forced to be simple. If the language allowed
complex expressions then it would matter.

Labels can introduce another annoying problem

Consider the code

1 int print(int a) {
2 return a;
3 }

Question

What is the problem here?

We already have a label called print. Since it is not a WLP4 procedure, it shouldn’t interfere with
WLP4.

We can ban WLP4 code that uses function names that match some of our reserved labels like new, init,
etc. This is not very future proof.

Since MIPS labels don’t have to be identical to WLP4 procedure names, we can change them.

We will prepend an ‘F’ to the front of labels corresponding to procedures. Then, so long as we don’t
create any labels with a ‘F’ at the beginning for any other purpose it should be okay.

69

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

The print function above would correspond to a label Fprint.

Revisiting Translation

factor → ID(expr 1, ..., exprn) we have,

code(factor) = push($29) + push($31)
+ code(expr1) + push($3)
+ code(expr2) + push($3)
+ ...
+ code(exprn) + push($3)
+ lis $5
+ .word FID
+ jalr $5
+ pop n times (pop all regs)
+ pop($31) + pop($29)

Compete example, with procedures:

1 int add(int a, int b) {
2 int c = 0;
3 c = a + b;
4 return c;
5 }
6 int wain(int a, int b) {
7 return add(a, b);
8 }

70

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

.import print/new, delete, init

lis $4
.word 4
lis $10
.word print
lis $11
.word 1

beq $0, $0, Fwain
Fadd: sub $29, $30, $4

code(int c = 0);
push($0) ; above translated

; save regs
push($5)
push($6)
push($7)
push($31)
; done with register saving (now stmts)
code(stmts)

code(c = a + b)
code(lvalue/c)
push($3)
code(expr/a+b)
pop($5)
sw $3, 0($5)

; final expr
code(c)
; restore regs
; pop/locals
jr $31 ; need to restore the stack

Fwain:
push($1) ; first param
push($2) ; second param
sub $29, $30, $4
push($31)
; save register $2
$2 = 0
call init ($2)
; no stmts
; return expr
code(add(a, b))
pop($0) ; pop a
pop($0) ; pop b
jr $31

We have finished code generation.

Compiler Optimizations

The goal of optimizations is generally to make code run faster

We want to reduce code size and make code run faster. (For bonus on A8, we are only concerned with
reducing code size).

Implementing these optimizations is not easy.

Constant Folding

If we want to generate the code for 1 + 2:

71

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

lis $3 ; $3 = 1
.word 1
sw $3, -4($30)
sub $30, $30, $4
lis $2 ; $3 = 2
.word 2
add $30, $30, $4 ; pop($5)
lw $5, -4($30)
add $3, $5, $3 ; $3 = 1 + 2

Our code generator could produce the following code for 1 + 2

lis $3
.word 3

If we notice that each element of the expression is a constant, we can add the constants at compile time
and output the code for the final value (instead of doing it at runtime).

If the expression was 1 + x, we would need to know the value of variable x. We cannot determine this
at compile time.

Constant Propogation

Sometimes the value of a variable is known at compile time:

1 int x = 1;
2 return x + x;

We can replace x with its known value, so this is equivalent to:

1 int x = 1;
2 return 1 + 1;

We can then apply Constant Folding

1 int x = 1;
2 return 2;

Since x is not used anywhere, we can eliminate the variable declaration entirely:

1 return 2;

21 Lecture 21
Constant propagation is more difficult than constant folding.

1 int wain(int x, int y) {
2 println(x + x); // Constant propagation can't be applied
3 x = 1;
4 println(x + x); // Can be applied
5 x = y;
6 return x + x; // Can't be applied
7 }

72

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

We can only apply it if we know the variable’s value does not depend on the input during the part of
the program we’re processing.

Common Subexpression Elimination

Even if the value of x is not known, there is a simplification we can make when generating code for x+x.

Here is the naïve code (assuming x is at offset 0 from $29)

lw $3, 0($29) ; $3 = x
sw $3, -4($30) ; push($3)
sub $30, $30, $4
lw $3, 0($29) ; $3 = x
add $30, $30, $4 ; pop($5)
lw $5, -4($30)
add $3, $5, $5 ; $3 = x + x

Even if the value of x is not known, there is a simplification we can make when generating code for x+x.

Since we’re adding the same variable twice, we can just do this.

lw $3, 0($29) ; $3 = x
add $3, $3, $3 ; $3 = x + x

We can do the same trick with larger expressions, e.g., if we have (a ∗ b − c) + (a ∗ b − c):

; block of code that computes a * b - c
add $3, $3, $3

Question

Can we apply common subexpression elimination to this code?

1 int f(int x) {
2 println(x);
3 return 2*x;
4 }
5 int wain(int a, int b) {
6 return f(a) + f(a);
7 }

No, CSE must not eliminate side effects.

Dead Code Elimination

Sometimes the compiler can determine that certain code will never execute, and can eliminate this code

1 int wain(int a, int b) {
2 if (a < b) {
3 if (b < a) {
4 b = 0;
5 } else { }
6 } else { b = 0; }
7 return a + b;
8 }

73

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

The code inside the innermost if can be ignored.

1 int wain(int a, int b) {
2 if (a < b) {
3 if (b < a) {
4 // dead code
5 } else { }
6 } else { b = 0; }
7 return a + b;
8 }

Deleting this code has a size benefit, but no real performance benefit.

1 int wain(int a, int b) {
2 if (a < b) {
3 // if condition eliminated
4 } else { b = 0; }
5 return a + b;
6 }

Dead code elimination interacts with other optimizations.

1 int wain(int x, int y) {
2 int releaseVersion = 0;
3 if (releaseVersion == 1) {
4 x = 1;
5 } else {
6 x = 0;
7 }
8 return x * y;
9 }

Normally we can’t apply constant propagation to x in the return.

1 int wain(int x, int y) {
2 int releaseVersion = 0;
3 x = 0;
4 return x * y;
5 }

Now constant propagation can be used on x as well.

DCE can allow constant propagation to occur. Conversely, constant propagation can allow the compiler
to prove code is dead.

Register Allocation

We ran into the issue that for sufficiently complicated code, it is not possible to store all values in
registers.

Our solution was to put everything on the stack because this makes generating code simpler and more
consistent.

But using registers for storage is much faster than using RAM.

Real-world compilers try to use registers as much as possible.

74

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

A variable is live if the current value of the variable will be used at a later point in the program.

A variable should be in a register if and only if it is live.

If too many variables or values are live at the same time, we have to choose which ones to put in RAM
vs registers.

x = 3;
y=10;
println(x);
z = 7;
y = y-x;
y = y-z;
println(z);
return z;

• x becomes live on line 1, and is last used on line 5

• y becomes live on line 2, and is last used on line 6

• z becomes live on line 4, and is last used on line 8

On lines 4 to 5, all three variables are live. If we only had two registers available, we would need to put
one variable in RAM.

We can use live ranges to construct a graph indicating which ranges overlap, and use graph colouring
algorithms to allocate registers (see MATH239)

If the live range graph can be k−coloured, where k is the number of available registers, we can allocate
all variables to registers.

Graph colouring can be slow (NP-complete problem), so it is usually approximated.

If the address-of operator is used on a variable then this variable must go in RAM.

Significant gains are possible just by implementing a basic register allocator. Optimizations to eliminate
pushes/pops or decrease the number of instructions for a push/pop are effective on A8.

A heuristic can be allocating variables and temporaries to registers on a “first-come, first-served” basis.

In this case we’d need to modify the offset table so that there are two kinds of variable locations: offsets
from the frame pointer, or registers.

Allocate non-parameter local variables in registers whenever possible.

Strength Reduction

This optimization involves replacing costly operations with equivalent faster operations. For example,
multiplication is slower than addition.

• (x + y) × 2 can be replaced with (x + y) + (x + y), which can then be optimized further using
common subexpression elimination.

A more complex version involves optimizing loops which perform expensive operations involving the loop
counter.

Peephole Optimization

This optimization happens after code generation is finished. This is used in LLVM.

Instead of directly outputting the generated code, the code is placed in a data structure and subject to
further analysis. The analysis tries to find sequences of instructions that can be replaced with simpler
sequences.

For example

75

https://www.jaidenratti.com/MATH239.pdf

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

add $3, $1, $0 ; $3 = a
add $7, $3, $0 ; copy $3 to temporary register

A peephole optimization could change this to add $7, $1, $0. This might be easier than making the
code generation itself smarter.

We use a sliding window.

Inlining Functions

We replace a function call with the body of the function itself

1 int foo(int x) {
2 return x + x;
3 }
4 int wain(int a, int b) {
5 return foo(a);
6 }

This is equivalent to:

1 int wain(int a, int b) {
2 return a + a;
3 }

This removes the overhead of a function call.

Tail Recursion

A recursive function call is in tail position if it is the last thing the function executes before returning.

In this case, what happens normally is:

• Recursive call happens, pushes local variables to the stack

• Recursive call finishes, pops from the stack, returns

• Original call finishes, pops from the stack, returns

Tail call optimization is based on the observation that in this situation, the recursive call can reuse the
stack frame of the original call instead of pushing its own stack frame. This saves a lot of space.

Original call pops the reused stack frame.

1 int fac(int n) {
2 return fac_rec(1, n);
3 }
4 int fac_rec(int acc, int n) {
5 if (n < 2) {
6 return acc;
7 }
8 return fac_rec(n*acc,n-1);
9 }

Can be replaced by

1 int fac_rec(int acc, int n) {
2 TOP:

76

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

3 if (n < 2) return acc;
4 acc = n * acc;
5 n = n - 1;
6 gotoTOP
7 }

22 Lecture 22
Why do we split programs into multiple files?

Modularity, team development, faster build time

Question

How do we resolve situations where we have labels in different files?

One option is to cat all such files together, and then compile?

• Duplicate labels defined in different files

• Accidental use of labels which should be private

Can we assemble files first and then cat?

Almost. Only one piece of code can be at 0x0 at a time. These assembled files need to be MERL files,
not just MIPS.

Concatenating two MERL files does not give a valid MERL file.

We still haven’t resolve the issue of labels in different files.

When we encounter a .word where the label is not in the file, we need to use a placeholder (an arbitrary
value), and indicate that we cannot run this program until the value of the label is given.

a.asm
lis $3
.word label
jr $31

b.asm
label: sw $4, -4($30)

You cannot run a.asm without linking with b.asm.

We need to extend our MERL file to notify us when we need to assembly with multiple files.

But sometimes we make typos. Consider

lis $3
.word bananana
banana:

Question

Did we make a mistake? Did we mean .word banana, or dod we mean for bananana to be
provided by another MERL file?

How do we recognize such errors? Without any other changes, our assembler will believe that a label
banana exists somewhere and would load this.

77

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

.import id is the directive that tells the assembler which symbols to link in. This will not assemble to
a word of MIPS. Errors occur if the label id is not in the current file and there is no .import id in the
file.

We need to add entries in the MERL symbol table. Previously we used the code 0x1 for relocation
entries, but this isn’t a relocation entry.

New format code: 0x11 for External Symbol Reference (ESR).

Question

What needs to be in an ESR entry?

1. Where the symbol is being used

2. The name of said symbol

Format:

0x11 ; Format code
; location used
; length of name of symbol (n)
; 1st ASCII char of name of symbol
; 2nd ASCII char of name of symbol
; ...
; nth ASCII char of name of symbol

Question

What if labels are duplicated?

Suppose we have c.asm along with our two other files that has:

label: add $1, $0, $0
; more code
beq $1, $0, label

We want label to not be exported, it should be self-contained.

.export label will make label available for linking with other files. As with .import, it does not
translate to a word in MIPS. It tells the assembler to make an entry in the MERL symbol table.

The assembler makes an ESD, or an External Symbol Definition, for these types of words. It follows this
format:

0x05 ; Format code
; Address the symbol represents
; length of name of symbol (n)
; 1st ASCII char of name of symbol
; 2nd ASCII char of name of symbol
; ...
; nth ASCII char of name of symbol

Our linker now has everything it needs to do its job.

Linking Algorithm

1 // Check for duplicate export errors
2 for each ESD in m1.table {

78

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

3 if there is an ESD with the same name in m2.table {
4 ERROR (duplicate exports)
5 }
6 }
7

8 // Combine the code segments for the linked file
9 // The code for m2 must appear after the code for m1

10

11 linked_code = concatenate m1.code and m2.code

1 // Relocate m2's table entries
2 reloc_offset = end of m1.code - 12 // length of m1.code
3 for each entry in m2.table {
4 add reloc_offset to the number stored in the entry
5 }
6

7 // Relocate m2.code
8 // It is essential for this to happen after the last step
9 for each relocation entry in m2.table {

10 index = (address to relocate - 12) / word size
11 add relocation offset to linked_code[index]
12 }

1 // Resolve imports for m1
2 for each ESR in m1.table {
3 if there is an ESD in m2.table with a matching name {
4 index = (address of ESR - 12) / word size
5 overwrite linked_code[index] with the exported label value
6 change the ESR to a REL
7 }
8 }
9

10 // Resolve imports for m2
11 // Repeat previous step for imoprts from m2 and exports for m1

1 // Combine the tables for the linked file
2 linked_table = concatenate modified m1.table and modified m2.table
3

4 // Compute the header information
5 endCode = 12 + linked_code size in bytes
6 endModule = endCode + linked_table size in bytes
7

8 // Output the MERL file
9 output merl cookie

10 output endModule
11 output endCode
12 output linked_code
13 output linked_table

79

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Linking Example

m1.asm

.import b

.export f
f: .word f

.word b
l: word l

;; HEADER of m1
0x00: beq $0, $0, 2 ; header: beq
0x04: 0x48 ; header: endModule
0x08: 0x18 ; header: endCode
;; CODE
0x0c: 0x0c ; f: .word f
0x10: 0x00 ; .word b ; placeholder
0x14: 0x14 ; l: .word l
;; FOOTER
0x18: 0x01 ; footer: relocation entry
0x1c: 0x0c ; relocation entry at 0x0c for f:
0x20: 0x01 ; footer: relocation entry
0x24: 0x14 ; relocation entry at 0x14 for l:
0x28: 0x11 ; footer: external symbol reference (ESR)
0x2c: 0x10 ; address where ESR is used, i.e., "b"
0x30: 0x01 ; length of the label "b"
0x34: 0x62 ; ASCII for "b"
0x38: 0x05 ; footer: external symbol definition (ESD)
0x3c: 0x0c ; address where ESD is defined, i.e., "f"
0x40: 0x01 ; length of the label "f"
0x44: 0x66 : ASCII for "f"

m2.asm

.import f

.export b
.word f

b: .word b
l: .word l

80

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

;; HEADER of m2
0x00: beq $0, $0, 2 ; header: beq
0x04: 0x48 ; header: endModule
0x08: 0x18 ; header: endCode
;; CODE
0x0c: 0x00 ; .word f ; placeholder
0x10: 0x10 ; b: .word b
0x14: 0x14 ; l: .word l
;; FOOTER
0x18: 0x01 ; footer: relocation entry
0x1c: 0x10 ; relocation entry at 0x0c for b:
0x20: 0x01 ; footer: relocation entry
0x24: 0x14 ; relocation entry at 0x14 for l:
0x28: 0x11 ; footer: external symbol reference (ESR)
0x2c: 0x0c ; address where ESR is used, i.e., "f"
0x30: 0x01 ; length of the label "f"
0x34: 0x66 ; ASCII for "f"
0x38: 0x05 ; footer: external symbol definition (ESD)
0x3c: 0x10 ; address where ESD is defined, i.e., "b"
0x40: 0x01 ; length of the label "b"
0x44: 0x62 : ASCII for "b”

Linked code (after a lot of work)

;; HEADER
0x00: beq $0, $0, 2 ; header: beq
0x04: 0x74 ; header: endModule
0x08: 0x24 ; header: endCode
;; CODE from m1.
0x0c: 0x0c ; f: .word f
0x10: 0x1c ; .word b
0x14: 0x14 ; l: .word l
;; CODE from m2.
0x18: 0x0c ; .word f ; placeholder
0x1c: 0x1c ; b: .word b
0x20: 0x20 ; l: .word l

81

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

;; FOOTER of m1
0x24: 0x01 ; footer: relocation entry
0x28: 0x0c ; relocation entry at 0x0c for f:
0x2c: 0x01 ; footer: relocation entry
0x30: 0x14 ; relocation entry at 0x14 for l:
0x34: 0x01 ; footer: relocation entry
0x38: 0x10 ; relocation entry at 0x10 for b:
0x3c: 0x05 ; footer: external symbol definition (ESD)
0x40: 0x0c ; address where ESD is defined, i.e., "f"
0x44: 0x01 ; length of the label "f"
0x48: 0x66 : ASCII for "f"
;; FOOTER of m2
0x4c: 0x01 ; footer: relocation entry
0x50: 0x1c ; relocation entry at 0x0c for b:
0x54: 0x01 ; footer: relocation entry
0x58: 0x20 ; relocation entry at 0x14 for l:
0x5c: 0x01 ; footer: relocation entry
0x60: 0x18 ; relocation entry at 0x18 for f:
0x64: 0x05 ; footer: external symbol definition (ESD)
0x68: 0x1c ; address where ESD is defined, i.e., "b"
0x6c: 0x01 ; length of the label "b"
0x70: 0x62 : ASCII for "b”

23 Lecture 23
Heap Management

In this course we have a library to deal with all of the memory management features, including init,
new, and delete.

This allows for data to exist in memory that is out of scope, that is, out of the boundaries of your stack
frame.

Question

How do we manage this memory?

The memory not on the stack is either in code, or on the heap. The init procedure initializes a heap
for us to use.

This is much more problematic than a stack to take care of. Stacks are nice and ordered. Calls can be
made to heaps using delete or new in arbitrary orders, so we can’t simply push and pop memory.

In our world:

Code
Read-only data

Global data
Heap Stack

Code is just data. You can store data in your code. In C, it’s common to separate out static, global
information from code, but it’s all just the stuff before the dynamic heap.

Question

How does a heap work?

We have a variety of implementations.

82

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

Example 1: No reclamation of Memory and Fixed Blocks

After init, we get two pointers, one to the start of memory on the heap and one at the end.

Initialization is O(1). Allocation is also O(1). We never delete.

Clearly not the best choice. We will run out of memory quickly since we aren’t reusing reclaimed memory.

Example 2: Explicit Reclamation and Linked List of Fixed-Size Blocks

Keep the fixed size idea the same, but keep track of a free list (linked list of free memory blocks) and we
can allocate from this linked list.

Example 3: Variable-Sized Blocks

We once again used a linked list but here our linked list will store a number of bytes and the next node.

Init: Start with the entire heap being free.

Let’s say we want to allocate 50 bytes. What we will do is allocate 54 bytes.

The first 4 bytes are the size of the block (integer), and the rest is the requested bytes. We need this
bookkeeping because delete doesn’t take a size. We return a pointer to the start of the 50 bytes.

Memory:

54 start 50 p . . . end 50

Free List is one node with 970 and 0x4036 (since we started with 1024 bytes at address 0x4000).

Next, we allocate 28 bytes. We allocated 32 bytes and return a pointer to the start of the 28 bytes.

54 p . . . 32 q . . . end 28

Free list is one node with 938 and 0x4056

Freeing the 50 bytes results in

32 q . . .

Free list is 54 0x4000 pointing to 938 0x4056.

Freeing the other 32 bytes results in a free list of 54 0x4000 pointing to 32 0x4036 pointing to 938 0x4056

We can do some consolidation. Notice that 54 + 0x4000 = 0x4036 and so the first two nodes in our
linked list can collapse to a single node.

We can further consolidate since 86 + 0x4000 = 0x4056.

The biggest issue with this approach is fragmentation. Suppose we have 48 bytes and we make the
following calls:

• Allocate 4 + 8

• Allocate 4 + 16

• Allocate 4 + 4

• Free 20

• Allocate 4 + 4

We can’t allocate 16, despite having 24 bytes free.

We’ve been showing the free list as a separate data structure. But we’re the ones allocating the data
structures. So how do we allocate space for the free itself?

The free list goes in the space itself. It is free, so the user doesn’t care what we put there.

83

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

24 Lecture 24
Dealing with Fragmentation

Heuristics:

• First fit: Put memory in the first available spot

• Best fit: Put the block in an exact match (or as close to it so there is less waste)

• Worst fit: Exact match if possible, otherwise put the block in the largest available space

Problem: Best- and worst-fit involve looking over the whole free list (so they are slow).

Other ideas include dmalloc and the binary buddy system.

Binary Buddy System

Start with 512 bytes of heap memory.

Suppose we try to allocate 19 bytes. We need an extra one for bookkeeping (so 20). This fits in a block
of size 25 = 32. We split memory until we find such a block and reserve the entire block.

256 256

128 128 256

64 64 128 256

Binary buddy still creates fragmentation, just of a different sort. If most allocations are of nice powers
of two, it defragments well.

Both the size and location of any block can be encoded using a list of “left” and “right” actions.

Binary Buddy Code

Start with a 1. The code for the whole of the heap is just 1

For each block division, append a 0 if the left block is selected, or a 1 if the right block is selected.

Since the first bit is always 1, we can tell the length of the code by looking for the first 1.

Since each bit represents a power of two, very short codes represent a lot of information.

One word is plenty for a code.

Some languages take care of deallocation.

1 int f() {
2 Myclass ob = new MyClass();
3 } // ob no longer accessible
4 // garbage collector reclaims

Second example

1 int f() {
2 MyClass ob2 = null;
3 if (x == y) {
4 MyClass ob1 = new MyClass();
5 ob2 = ob1;
6 } // ob1 goes out of scope
7 // ob2 still holds the object
8 } // ob2 no longer accessible

84

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

32 32 64 128 256

In order for automatic memory management to happen, the compiler and the allocator need to coordinate
in some way.

At the minimum, the compiler needs to tell the allocator when something goes out of scope.

Technique 1: Reference Counting

For each heap block, keep track of the number of pointers that point to it.

Must watch every pointer and update reference counts each time a pointer is reassigned. The compiler
needs to call some procedure provided by the allocator every time a pointer goes into or out of scope.

If a block’s reference count reaches 0, reclaim it.

1 struct List {
2 List *next;
3 int val;
4 };
5 l = new List;
6 l->next = new List;
7 // l->next is not a variable in scope
8 // it's a field of an object, and there is
9 // a reference to that object in scope

Question

What issues are there to this?

If a block points to another block and vice versa, then the cluster is unreachable and should be cleaned.

But both will retain a reference to each other.

Question

If reference counting is so bad, why do people use it?

It’s very straightforward to implement, so it’s an easy way to get some automatic memory management
easily.

But it’s expensive and flawed.

Question

Is it possible to fix this issue with reference counting?

Short answer: No. Long answer: What if we delayed counting references, so that we would never get
these problematic clusters in the first place.

The remaining techniques are classed as garbage collection.

Technique 2: Mark and Sweep

Scan the entire stack (and global variables) and search for pointers. Mark the heap blocks that have
pointers to them. If these contain pointers, continue following.

Then scan the heap, reclaim any blocks that aren’t marked. Boils down to a graph traversal problem.

The compiler needs to tell the allocator

85

1249 CS241: Foundations of Sequential Programs Jaiden Ratti

• Where the pointers are in the stack

• Where the pointers are in the heap

This means that the compiler and allocator need to agree on both stack layout and object layout.

This is a much greater degree of co-design than is needed for reference counting (so mark and sweep is
rarely bolted onto a language post-hoc).

Technique 3: Copying Collector

Split the heap into two halves, say H1 and H2.

Allocate memory in H1. Perform a mark-and-copy; but mark by coping objects from H1 into H2.

After the copy H2 has all living objects stored contiguously.

Once finished copying, begin allocation to H2 (reverse the roles).

Three major benefits

• Allocation is always extremely fast (filling a heap)

• The "sweep" phase is free

• We have no fragmentation in memory

If most objects aren’t long-lived, we don’t actually do much.

Since copying an object from one heap to an object is moving objects, the compiler needs to be prepared
for the allocator to modify active memory.

In practice, most objects are short-lived (good for copy), but those objects that aren’t short lived are
nearly immortal.

Most practical garbage collectors are generational collectors: they use copying from H1 to H2, but then
H2 is mark-and-sweep.

With generational, we benefit from the free sweep for young objects, and the lack of copying for old
objects.

86

	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Lecture 13
	Lecture 14
	Lecture 15
	Lecture 16
	Lecture 17
	Lecture 18
	Lecture 19
	Lecture 20
	Lecture 21
	Lecture 22
	Lecture 23
	Lecture 24

