Language and Proofs in Algebra

MATH135

JAIDEN RATTI PROF. J.P. PRETTI 1229

Contents

1 Introduction to the Language of Mathematics

1.1 Sets

Sets are not ordered.

 ${7, \pi} = {\pi, 7}$

Denote element of set by $7 \in \{2, 7, 3\}$. $\{7\} \notin \{7, 3, 2\}$, but $\{7\} \in \{\{7\}, 3, 2\}$.

 $\{\} = \emptyset, \emptyset \neq \{\emptyset\}$

∅ ∈ { */* 7*,* 3}, ∅ ∈ ∅ */*

 $\mathbb{Z} \rightarrow$ set of integers. $\mathbb{N} \to \text{set of natural numbers.}$ $\mathbb{Q} \to \text{set of rational numbers.}$ $\mathbb{R} \to$ set of real numbers.

1.2 Mathematical Statements and Negation

Statements are true or false.

 $9 + 6 = 15$ is a statement

 $x > 2$ is not a statement (Open sentence. If you knew *x*, it would be a statement)

 $10 > 7$ is a statement

Open sentence \neq statement.

Negation

P is a statement

Negation of $P(\neg P)$ is true when *P* is false.

1.3 Quantifiers and Quantified Statements

1.3.1 Universal and Existential Quantifiers

 $x^2 - x \geq 0$ is an open statement.

 $∀x ∈ ℕ, x² - x ≥ 0$. This is "for all natural numbers $x, x² - x ≥ 0$ " We know this is true.

Changing the domain makes it false.

 $\forall x \in \mathbb{R}, x^2 - x \geq 0$

When domain is empty $(\forall x \in \emptyset) P(x)$ is always true.

 $\forall x \in \emptyset, x^2 - x \ge 0$ is true. All elephants in the room have 20 legs $\ddot{\smile}$

Let $x \in \mathbb{R} \leftarrow$ universally quantifying the following statement.

Existential Quantifier

 $\exists x \in S, P(x)$. This is "there exists a number *x* in the set *S* such that $P(x)$ is true." There just has to be one such case.

$$
\exists m \in \mathbb{Z}, \frac{m-7}{2m+4} = 5, m = -3. \therefore true.
$$

Once again, domain matters.

 $\exists x \in \emptyset, P(x)$ is always false.

Exercises

64 is a perfect square
$$
\iff \exists x \in \mathbb{Z}, x^2 = 64
$$

\n $y = x^3 - 2x + 1$ has no *x*-ints $\iff \forall x \in \mathbb{R}, x^3 - 2x + 1 \neq 0$
\n $\iff \neg(\exists x \in \mathbb{R}, x^3 - 2x + 1 = 0)$
\n $2^{2a-4} = 8$ has a rational solution $\iff \exists a \in \mathbb{Q}, 2a - 4 = 3$
\n $\frac{n^2 + n - 6}{n + 3}$ is an integer as long as *n* is an integer $\iff \forall n \in \mathbb{Z}, \frac{n^2 + n - 6}{n + 3} \in \mathbb{Z}$

1.3.2 Negating Quantifiers

Everybody in this room was born before 2010 \leftarrow Universal

Somebody in this room was born after 2010, or on $2010 \leftarrow$ Existential

 $∀x ∈ S, P(x)$ is false when there is at least one $x ∈ S$ for which $P(x)$ is false.

$$
\neg(\forall x \in S, P(x)) \equiv \exists x \in S, (\neg P(x))
$$

$$
\neg(\exists x \in S, P(x)) \equiv \forall x \in S, (\neg P(x))
$$

We cannot just change all the signs since $P(x)$ might be complicated.

 $\forall x \in \mathbb{R}, |x| < S$. Negation: $\exists x \in \mathbb{R}, |x| \geq S$

Someone in this room was born before 1990. Everyone in this room was born after or during 1990 is the negation.

 $\exists x \in \mathbb{Q}, x^2 = S$. Negation: $\forall x \in \mathbb{Q}, x^2 \neq S$.

1.4 Nested Quantifiers

 $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1$ is false for every *x* and every *y*.

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$ is true. ∃ is in the open statement

 $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$ is true.

 $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1$ is false. If *x* was fixed, there is no way every *y* will work.

2 Logical Analysis of Mathematical Statements

2.1 Logical Operators

Statement represented by *A*.

Conjunction and Disjunction

A and $B \equiv A \wedge B$ is

√ 2 is irrational and 3 *>* 2 is true.

10 is even and $1 = 2$ is true. $\forall x \in \mathbb{N}, (x > x - 1) \wedge (2x > x)$ is true. $∀x ∈ \mathbb{Z}, (x > x - 1) ∧ (2x > x)$ is false. *A* or $B \equiv A \vee B$ is

 $5\leq 6$ is true.

87 is a prime number of $14x = 25$ has $x \in \mathbb{Z}$ is false.

16 is a perfect square or 15 is a multiple of 3 is true.

Logical Equivalence

 $A \equiv \neg(\neg A)$. *A* is logically equivalent to not not *A*. De Morgan's Laws

$$
\neg(A \lor B) \equiv (\neg A) \land (\neg B)
$$

$$
\neg(A \land B) \equiv (\neg A) \lor (\neg B)
$$

Example, show

$$
\neg(A \land (\neg B \land C)) \equiv \neg(A \land C) \lor B
$$

\n
$$
\neg(A \land (\neg B \land C))
$$

\n
$$
\equiv (\neg A) \lor \neg(\neg B \land C)
$$

\n
$$
\equiv (\neg A) \lor (B \lor \neg C)
$$

\n
$$
\equiv (\neg A) \lor (\neg C \lor B)
$$

\n
$$
\equiv (\neg A \lor \neg C) \lor B
$$

\n
$$
\equiv \neg(A \land C) \lor B
$$

2.2 Implication

"If *H* then C ", $H \implies C$ Equivalent to $(\neg H) \vee C$

 $H =$ hypothesis, C is conclusion

√ $\overline{2}$ is irrational, $3^3 = 27 \leftarrow$ True.

√ $\overline{2}$ is irrational, $3^3 = 28 \leftarrow$ False. √ 2 is rational, $3 + 4 = 6 \leftarrow$ True. √ 2 is rational, $3 + 4 = 7 \leftarrow$ True. For all real numbers *x*, if $x > 2, x^2 > 4 \leftarrow$ True. For all real numbers *x*, if $x \geq 2, x^2 > 4 \leftarrow$ True. $∀k ∈ \mathbb{Z}$, if $k > 3$, then $2k + 1 ≥ 9$ is true. $∀k ∈ \mathbb{Z}$, if $k > 3$, then $2k + 1 \ge 10$ is false. $∀k ∈ \mathbb{Z}$, if $k > 3$, then $2k + 1 > 8$ is true. $\forall x \in \mathbb{R} (x \ge 7 \implies x + \frac{1}{x} \ge 2)$ For all $x \in \mathbb{R}$, if $x \ge 7$, then $x + \frac{1}{x} \ge 2$ $x \in \mathbb{R} \land x \geq y \implies x + \frac{1}{x} \geq 2$ $x + \frac{1}{x} \ge 2$ whenever $x \in \mathbb{R}$ and $x \ge 7$ Negation of Implication $\neg(H \implies C) \equiv \neg((\neg H) \vee C) \equiv (\neg(\neg H)) \wedge (\neg C) \equiv H \wedge (\neg C)$

Negation of implication is not an implication.

If 7 is a prime and $5 \leq 6$, then 24 is a perfect square (false).

7 is prime and 5 ≤ 6 and 24 is not a perfect square (true).

Negation of implication is and. Hypothesis is not always first.

Implication Examples

For all $a, b, x \in \mathbb{R}$

- 1. If $a < b$, then $a \leq b$ (true)
- 2. If $|x| = 3$, then $x^2 = 9$ (true)

2.3 Contrapositive and Converse

Contrapositive

The contrapositive of $A \implies B$ is the implication $\neg B \implies \neg A$

- 1. If $a > b$, then $a \geq b$ (true)
- 2. If $x^2 \neq 9$, then $|x| \neq 3$ (true)

Logically equivalent with $A \implies B$

Converse

The converse of $A \implies B$ is the implication $B \implies A$

- 1. If $a \leq b$, then $a < b$ (false)
- 2. If $x^2 = 9$, then $|x| = 3$ (true)

Not logically equivalent with $A \implies B$

2.4 If and Only If

Logical operator \iff For all $x \in \mathbb{R}$, $|x| = 3$ iff $x^2 = 9$ True both ways. $2 + 2 = 5$ iff $3 + 3 = 7$ is True

3 Proving Mathematical Statements

Prove:

$$
x^4 + x^2y + y^2 \ge 5x^2y - 5y^2
$$

Let $x, y \in \mathbb{R}$

$$
0 \le (x^2 - 2y)^2
$$

= $x^4 - 4x^2y + 4y^2$
= $x^4 - 5x^2y + x^2y + 5y^2 + y^2$

Faulty logic: Prove $7 = -7$ by squaring both sides

3.1 Proving Universally Quantified Statements

Proving $\forall x \in S, P(x)$

We can consider arbitrary $x \in S$, and argue that $P(x)$ must be true (direct proof).

Prove an identity

Prove

 $max\{x, y\} = \frac{x+y+|x-y|}{2}$ $\frac{y+|x-y|}{2}$ for all $x, y \in \mathbb{R}$ Case 1: *x* ≥ *y*. In this case $max{x, y} = x$. And $\frac{x+y+x-y}{2} = x$ <u>Case 2</u>: $x < y$. In this case $max{x,y} = y$. And $\frac{x+y+(-x+y)}{2} = y$ In both cases, LHS = RHS \blacksquare

Disprove Universally Quantified Statement

 $\forall x \in \mathbb{R}, (x^2 - 1)^2 \geq 0$

A counter example is $1 \in \mathbb{R}$.

Single example doesn't prove $\forall x \in S, P(x)$ is true.

Single counter example does prove $\forall x \in S, P(x)$ is false.

3.2 Prove Existentially Quantified Statements

There exists a perfect square *k* such that $k^2 - \frac{31}{2}k = 8$.

Consider $k = 16$. Since $k = 4^2$, k is a perfect square. Also $k^2 - \frac{31}{2}k = 256 - 248 = 8$ completing the proof.

Disprove Existential Statement

We will prove the negation is true.

"There exists a real number *x* such that $\cos 2x + \sin 2x = 3$ "

"For all real numbers x such that $\cos 2x + \sin 2x \neq 3$ "

 $x \in \mathbb{R}$

Since $\cos 2x, \sin 2x \leq 1$, then

 $\cos 2x + \sin 2x \leq 2$

For all $k \in \mathbb{N}$, there exists $x \in \mathbb{R}$, such that $\log_k x^5 = \frac{1}{2}$

Proof

Let $k \in \mathbb{N}$. Consider $x = k^{\frac{1}{10}}$. Clearly $x \in \mathbb{R}$. Moreover, $\log_k x^5 = \log_k (k^{\frac{1}{10}})^5 = \log_k k^{\frac{1}{2}} = \frac{1}{2}$

3.3 Proving Implications

If *m* is an even integer, then $7m^2 + 4$ is an even integer.

Proof

Assume *m* is an even integer.

That is $m = 2k$ for some integer $k \in \mathbb{Z}$

We must show $\exists \ell \in \mathbb{Z}$, $7m^2 + 4 = 2\ell$

We have $7m^2 + 4 = 7(2k)^2 + 4 = 2(14k^2 + 2)$

Since $k \in \mathbb{Z}$, then $14k^2 + 2 \in \mathbb{Z}$. That is, picking $\ell = 14k^2 + 2$ completes the proof.

For all integers k , if k^5 is a perfect square, then $9k^19$ is a perfect square

```
Let k \in \mathbb{Z}Assume k^2 is a prefect square
That is k^5 = n^2 for some n \in \mathbb{Z}then 9k^{19} = (9k^{14})k^5= (9k^{14})n^2= (3k^7)^2 n^2= (3k^7n)^2
```
Since $k, n \in \mathbb{Z}$, then $3k^7n \in \mathbb{Z}$. Thus $9k^{19}$ is a perfect square.

3.4 Divisibility of Integers

An integer *m* divides an integer *n* if there exists an integer *k* so that $n = km$.

We write $m|n$ is m divides n

7|56*,* 7| − 56*,* 7|0*,* 0|0

7 ∤ 55*,* 0 ∤ 7

 $\frac{7}{56}$ is a number, 7|56 is a statement.

3.4.1 Transitivity of Divisibility

For all $a, b, c \in \mathbb{Z}$ if $a|b$ and $b|c$ then $a|c$.

Proof

Let $a, b, c \in \mathbb{Z}$. Assume $a|b$ and $b|c$ then $b = ak$ and $c = b\ell$ for some $k, \ell \in \mathbb{Z}$.

Substituting gives $c = (ak)\ell = (k\ell)a$

Notice that $k\ell \in \mathbb{Z}$ because $k, \ell \in \mathbb{Z}$. Thus $a|c$ by the definition of divisibility.

3.4.2 Divisibility of Integer Combinations

For all a, b, c if $a|b$ and $a|c$ then $a|(bx + cy)$ for all integers x, y .

e.g. $a = 5, b = 10, c = 25$

 $\text{DIC} \rightarrow 5|(10x+25y)$ for all $x, y \in \mathbb{Z}$

Proof

Let $a, b, c \in \mathbb{Z}$. Assume $a|b$ and $a|c$. Then $ak = b$ and $a\ell = c$ for some $k, \ell \in \mathbb{Z}$. Now $bk + cy =$ $akx + a\ell y = a(kx + \ell y)$

Since $k, x, \ell, y \in \mathbb{Z}$, then $kx + \ell y \in \mathbb{Z}$.

Proposition

For all $a, b, c \in \mathbb{Z}$ if $a|b$ or $a|c$, then $a|bc$

Note

Let *P, Q*, and R be statement variables

$$
(P \lor Q) \implies R \equiv (P \implies R) \land (Q \implies R)
$$

Proof

Let $a, b, c \in \mathbb{Z}$ First we prove $a|b \implies a|bc$ So suppose $b = ak$ for some $k \in \mathbb{Z}$ Then $bc = (ak)c = a(kc)$ Since $k, c \in \mathbb{Z}$, then $kc \in \mathbb{Z}$. Hence $a|bc$ To complete this proof, we must show $a|c \implies a|bc$. The argument in this case is similar \blacksquare . Another Example For all $a, b, c \in \mathbb{Z}$ if for all $x \in \mathbb{Z}, a|(bx + c)$ then $a|(b+c)$ Proof Let $a, b, c \in \mathbb{Z}$ Assume $\forall x \in \mathbb{Z}, a | (bx + c)$ Choosing $x = 1$, gives $a|(b+c)$ This is not choosing a number for all integers *x*. We are assuming the hypothesis is correct. For all $a, b, c, x \in \mathbb{Z}$ if $a|(bx + c)$, then $a|(b + c)$ This is false. Counter example $3|(2(3) + 3)$ and $3 \nmid (2 + 3)$ TD: ∀*a, b, c* ∈ Z*,*(*a*|*b* ∧ *b*|*c*) =⇒ *a*|*c*

11|55 and 55|*n*, we know 11|*n*, by TD.

3.5 Proof of Contrapositive

Example

For all integers x , if $x^2 + 4x - 2$ is odd, then x is odd.

Proof

Let $x \in \mathbb{Z}$. We will show the contrapositive is true.

Assume *x* is even. That is $x = 2k$ for some integer *k*. Substitute to get

 $x^2 + 4x - 2 = 4k^2 + 8k - 2 = 2(2k^2 + 4k - 1)$

Since *k* is an integer, then $2k^2 + 4k - 1 \in \mathbb{Z}$. That is $x^2 + 4x - 2$ is even \blacksquare .

Example

If $a, b \in \mathbb{R}$. If *ab* is irrational then *a* is irrational or *b* is irrational.

Proof

Let $a, b \in \mathbb{R}$. We will use the contrapositive.

Assume $a = \frac{p}{q}$ and $b = \frac{r}{s}$ for some integers $p, q, r, s \in \mathbb{Z}$ where $q, s \neq 0$.

Then $ab = \frac{rp}{qs}$ moreover since $p, q, r, s \in \mathbb{Z}$ then $rp, qs \in \mathbb{Z}$. Also $qs \neq 0$. That is *ab* is rational.

Example

Let $x \in \mathbb{R}$. If $x^3 + 7x^2 < 9$, then $x < 1.1$.

Proof

Let $x \in \mathbb{R}$. Suppose $x \ge 1.1$ then $x^3 + 7x^2 \ge (1.1)^3 + 7(1.1)^2 > 9.8 > 9$.

We get that $x^3 + 7x^2 \ge 9$. Therefore the contrapositive is true, proving the original statement is true as well.

Example

Let $a, b, c \in \mathbb{Z}$

If $a|b$ then $b \nmid c$ or $a|c$.

Proof

Let $a, b, c \in \mathbb{Z}$.

Using "elimination", assume $a|b$ and $b|c$. By TD $a|c$.

Why does this work?

$$
(A \implies (B \lor C)) \equiv A \land \neg B \implies C
$$

3.6 Proof by Contradiction

A or ¬*A* must always be false.

 $A \wedge (\neg A)$ is always false, calling it true is a contradiction.

We can prove that statement P is true by, assuming $\neg P$ is true then based on this assumption, prove that both Q and $\neg Q$ are true for some statement P .

Prove that $\neg(\exists a, b \in \mathbb{Z}, 10a + 15b = 12)$

By way of contradiction (BWOC), assume that $10a + 15b = 12$ for some $a, b \in \mathbb{Z}$. Then $5(2a + 3b) = 12$. Since $2a + 3b \in \mathbb{Z}$, then 5|12. However we know that $5 \nmid 12$. This is a contradiction, completing the proof.

Prove $\sqrt{2}$ is irrational.

Assume it is rational, $\sqrt{2} \in \mathbb{Q}$.

 $\sqrt{2} = \frac{a}{b}$ where *a*, *b* are integers > 0.

Assume they are not even. If they were even, $a = 2c$ and $b = 2d$ and thus $c < a$ and $d < b$.

 $\frac{a}{b} = \frac{2c}{2d} = \frac{c}{d}$ $\frac{a}{b}$ = √ 2 $a^2 = 2b^2$

 $2|a^2$, so a^2 is even.

Assume its odd

 $a^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. *a* must be even.

 \exists an integer *m* such that $a = 2m$,

 $b^2 = 2m^2$. *b* must be even then which is a contradiction.

∴ √ 2 is irrational.

 $\neg(A \implies B) \equiv (A \land (\neg B))$

Proving $A \implies B$ is true by contradiction, we assume $A \implies B$ is false. A is true, B is false. If we can prove this is a contradiction, $A \implies B$ is true.

 $∀a, b, c ∈ \mathbb{Z}$ if $a|(b + c)$ and $a \nmid b$, then $a \nmid c$.

For sake of contradiction, there exists integers a, b, c such that $a|(b+c)$ and $a \nmid b$ and $a|c$.

By DIC we have $a\vert [(1)(b+c) + (-1)c] = a\vert b$ contradiction.

3.7 Proving If and Only If Statements

Example

Let $x, y \in \mathbb{R}$ where $x, y \ge 0$. Then $x = y$ iff $\frac{x+y}{2} = \sqrt{xy}$

Proof

Let $x, y \in \mathbb{R}$ where $x, y \geq 0$.

We will prove this in both directions (\rightarrow)

Assume $x = y$, $\frac{y+y}{2} \to y \leftarrow \sqrt{yy}$. (←) Assume $\frac{x+y}{2} = \sqrt{xy}$ $\implies x + y = 2\sqrt{xy}$ \implies $(x+y)^2 = 4xy$ $\implies x^2 - 2xy + y^2 = 0$ $\implies (x-y)^2 = 0$ $\implies x - y = 0$ $\implies x = y$

4 Mathematical Induction

4.1 Notation for Summations, Products and Recurrences

Summation Notation

$$
\sum_{k=3}^{7} k^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2 = 135
$$

Product Notation

$$
\prod_{k=1}^{3} (5 - k)! = 4! \cdot 3! \cdot 2! = 288
$$

4.2 Proof by Induction

Statement

$$
\sum_{i=1}^{n} i(i+1) = \frac{1}{3}n(n+1)(n+2) \quad \forall n \in \mathbb{N}
$$

Proof

We will proceed by induction on *n*.

Base Case

We consider when $n = 1$

Then

$$
\sum_{i=1}^{n} i(i+1) = \sum_{i=1}^{1} i(i+1) = 1(1+1) = 2
$$

And

$$
\frac{1}{3}n(n+1)(n+2) = \frac{1}{3}(1)(2)(3) = 2
$$

That is, the statement is true when $n = 1$.

Inductive Step

Let k be an arbitrary natural number.

Assume

$$
\sum_{i=1}^{k} i(i+1) = \frac{1}{3}k(k+1)(k+2)
$$

Consider when $n = k+1$

Then

$$
\frac{1}{3}n(n+1)(n+2) = \frac{1}{3}(k+1)(k+2)(k+3)
$$

And

$$
\sum_{i=1}^{n} i(i+1) = \sum_{i=1}^{k+1} i(i+1)
$$

= $(\sum_{i=1}^{k} i(i+1)) + (\sum_{i=k+1}^{k+1} i(i+1))$
= $\frac{1}{3}k(k+1)(k+2) + (k+1)(k+2)$ by our inductive hypothesis
= $\frac{1}{3}k(k+1)(k+2) + \frac{3}{3}(k+1)(k+2)$
= $\frac{1}{3}(k+1)(k+2)(k+3)$

That is, the statement is true when $n = k + 1$. Therefore by POMI, the proof is complete. POMI

Let $P(n)$ be a statement that depends on $n \in \mathbb{N}$. If statement 1 and 2 are true

- 1. *P*(1)
- 2. For all $k \in \mathbb{N}$, if $P(k)$, then $P(k+1)$

Then statement 3 is true.

3. For all $n \in \mathbb{N}, P(n)$ $P(1) \implies P(2) \implies P(3) \implies P(4)$ POMI doesn't have to start at 1. Let $P(n)$ be the open sentence $6|(2n^3+2n^2+n)$ Prove $P(n)$ is true for all *n*. Base Case *P*(1)*,* 6|6✓ Assume $P(k)$ is true $6|(2k^3+3k^2+k)$ Inductive Step $6|(2(k+1)^3+3(k+1)^2+(k+1))$ $2(k^3 + 3k^2 + 3k + 1) + 3(k^2 + 2k + 1) + (k + 1)$ $2k^3 + 3k^2 + k$ 6 divides this $+ 6k^2 + 6k + 6k + 6$ 6 divides this

6 divides the sum by DIC.

4.3 Binomial Coefficients

 $\binom{5}{2} \implies 5C2 \implies$ "5 choose $2" = \frac{5!}{3! \cdot 2!} = 10$ $\binom{n}{m} = \frac{n!}{(n-m)!m!}$ ${n \choose m} = 0$ when $m > n$. Pascals Identity

$$
\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}
$$
 for all positive integers n, m with $m < n$.

Binomial Theorem

 $(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4$ BT1

$$
(1+x)^n = \sum_{m=0}^n \binom{n}{m} x^m
$$

BT₂

$$
(a+b)^n = \sum_{m=0}^n \binom{n}{m} a^{n-m} b^m
$$

Practice

Prove that for all integers $n \geq 0$, $\sum_{k=0}^{n} {n \choose k} = 2^n$ Let $x = 1$ in BT1 $(1+1)^n = \sum_{k=0}^n \binom{n}{0} (1)^0$

What is the coefficient of x^{18} in $(x^2 - 2x)^{12}$

By BT2

$$
(x^{2} - 2x)^{12} = \sum_{m=0}^{12} {12 \choose m} (x^{7})^{12-m} (-2x)^{m}
$$

$$
= \sum_{m=0}^{12} {12 \choose m} (-2)^{m} x^{24-m}
$$
Choosing $m = 6$ gives the coefficient of ${12 \choose 6} (-2)^{6}$
$$
= 59136
$$

Example

Define $x_1 = 4, x_2 = 68$ and $x_m = 2x_{m-1} + 15x_{m-2}$ for $m \ge 3$

Prove that $x_n = 2(-3)^n + 10 \cdot 5^{n-1}$ for all $n \in \mathbb{N}$.

Proof by Induction on *n*.

Base Case: True when $n = 1, n = 2$

Inductive Step:

Let *k* be an arbitrary natural number where $k \geq 2$.

Let $P(n)$ be the open sentence.

Assume $P(1), P(2), P(3), \ldots, P(k)$ are all true. Then what happens to $k + 1$?

Consider $n = k + 1$

Then

$$
x_n = x_{k+1} = 2x_k + 15x_{k-1}
$$

= 2[2(-3)^k + 10 · 5^{k-1}] + 15[2(-3)^{k-1} + 10 · 5^{k-2}]
= 4(-3)⁴ + 30(-3)^{k-1} + 20 · 5^{k-1} + 150 · 5^{k-2}
= 4(-3)^k - 10(-3)^k + 4 · 5^k + 6 · 5^k
= -6(-3)^k + 10 · 5^k
= 2(-3)^{k+1} + 10 · 5^k

Hence the proof is done by POSI. Difference between POMI and POSI is not base cases.

4.4 Principal of Strong Induction

Let $P(n)$ be a statement that depends on $n \in \mathbb{N}$. If

1. *P*(1) is true, and

2. $\forall k \in \mathbb{N}, [(P(1) \land P(2) \land \ldots \land P(k)) \implies P(k+1)]$

Example

Prove that *nm* − 1 breaks are needed to break an *n* × *m* chocolate bar into individual pieces. Proof

 $N = nm$. We will proceed by induction on *N*.

Base Case

When $N = 1$, no breaks are needed.

Since $N - 1 = 0$, the statement is true for $N = 1$.

Inductive Step

Let $k \in \mathbb{N}$.

Suppose the statement is true when $N = 1, N = 2, N = 3, \ldots, N = k$.

Consider $N = k + 1$ and the first break. We are left with 2 smaller bars. Let x and y be the number of pieces in these smaller bars.

Then $1 \le x, y \le k$. Also $x + y = N$. Breaking these two bars requires $(x - 1) + (y - 1) = N - 2$ breaks by our IH.

For the original bar, we require

 $1 + N - 2 = N - 1$ breaks. By POSI this completes the proof.

5 Sets

5.1 Introduction

The number of elements in a set is cardinality. Denoted by |*S*|.

$$
S = \{1, 2, 4, 6\}.|S| = 4
$$

 $|\emptyset| = 0$ but $|\{\emptyset\}| = 1$

 $\emptyset = \{\}$ empty set but ...

 $\{\emptyset\}$ is not an empty set

5.2 Set-Builder Notation

Universal set U contains the objects we are concerned with (universe of discourse \rightarrow universal set). Notation:

 ${x \in \mathcal{U} : P(x)}$ = "The set of all *x* in *U* such that $P(x)$ is true". $Q = \{x \in \mathbb{R} : x = \frac{a}{b} \text{ for some } a, b \in \mathbb{Z}, b \neq 0\}$ Set of positive factors of $12 \{x \in \mathbb{N} : n|12\}$ Set of even integers $\{x \in \mathbb{Z} : x = 2k, k \in \mathbb{Z}\}\$ Set-Builder Notation Type 2 ${f(x) : x \in U}$ all objects in U of the form $f(x)$ " Even set of integers $\{2k : k \in \mathbb{Z}\}\$ Perfect squares $\{x^2 : x \in \mathbb{R}\}\$ Multiples of 12 $\{12n : n \in \mathbb{Z}\}\$ Set-Builder Notation Type 3 ${f(x) : x \in U, P(x)}$ or ${f(x) : P(x), x \in U}$ Set consisting of all objects of the form $f(x)$ such that *x* is an element of U and $P(x)$ is true. $Q = \{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \}$ Integer powers of $2: \{2^k : k \in \mathbb{Z}, k \geq 0\}$ Perfect squares larger than $50: \{x^2 : x^2 > 50, x \in \mathbb{Z}\}\$ Multiples of $7: \{7x : x \in \mathbb{Z}\}\$ Odd perfect squares: $\{x^2 : x^2 = 2k + 1, k \in \mathbb{Z}\}\$

5.3 Set Operations

Union of 2 sets *S* & *T*, $S \cup T$ is the set of all elements in either

$$
S \cup T = \{x : (x \in S) \lor (x \in T)\}\
$$

e.g. ${2k : k \in \mathbb{Z} }$ ∪ ${k \in \mathbb{Z} : 0 \le k \le 10}$ = ${0, 1, 2, 3, 4, ..., 10, 12, 14, ...}$

Intersection of 2 sets $S \& T, S \cap T$ is the set of elements in both

$$
S \cap T = \{x : (x \in S) \land (x \in T)\}\
$$

Set Difference of 2 sets *S* & *T*, *S* − *T* or *S* \ *T* is the set of all elements in *S* but not in *T*.

$$
S \setminus T = \{x : (x \in S) \lor (x \notin T)\}\
$$

The complement of a set S , \overline{S} or S^{\complement} is the set of elements in the universal set but not in *S*.

$$
\overline{S} = \mathcal{U} - S = \{x \in \mathcal{U} : x \notin S\}
$$

(When $\mathcal{U} = \mathbb{Z}$) Let $S = \{x \in \mathbb{Z} : x \ge 0\}$, $\overline{S} = \{x \in \mathbb{Z} : x < 0\}$

5.4 Subsets of a Set

Two sets are disjoint when $S \cap T = \emptyset$.

Any set *S* and its complement \overline{S} are disjoint.

Any set S and \emptyset are disjoint.

A set *S* is a subset of set *T* if every element of *S* is an element of *T*. Denoted by: $S \subseteq T$. If *S* is not a subset of *T*, that is denoted by $S \nsubseteq T$.

 ${2k : k \in \mathbb{Z} \subseteq \mathbb{Z}}$ $\{2, 5, 6, 8, 10\} \nsubseteq \{2k : k \in \mathbb{Z}\}\$ \emptyset ⊂ *S* and *S* ⊂ *S* N ⊆ Z*,* Z ⊆ Q*,* Q ⊆ R

A set *S* is a proper set of *T* if there is at least one element of *T* that is not in *S*. (*S* must be a subset). S ⊊ T .

$$
A = \{2k : k \in \mathbb{Z}\}, B = \{2k + 1 : k \in \mathbb{Z}\}, C = A \cup B
$$

$$
A \subsetneq \mathbb{Z}, B \subsetneq \mathbb{Z}
$$

$$
C \subset \mathbb{Z} \text{ (not a proper subset since } C = \mathbb{Z})
$$

$$
\{1,2,3\} \subset \{1,2,3,4\} \text{ and } \{1,2,3\} \subsetneq \{1,2,3,4\}
$$

All proper subsets are subsets

If $A \subset B \land B \subset A$, then $B = A$.

5.5 Subsets, Set Equality, and Implications

Given *S* and *T*, prove $S \subseteq T$

Prove the implication $\forall x \in \mathcal{U}, (x \in S) \implies (x \in T)$

Example: Let $S = \{8m : m \in \mathbb{Z}\}\$ and $T = \{2n : n \in \mathbb{Z}\}\$. Show that $S \subseteq T$.

Proof: Let $x \in \mathbb{Z}$ and assume $x \in S$. Then 8*m* for $m \in \mathbb{Z}$. Then $x = 2(4m)$. $4m \in \mathbb{Z}$, set $n = 4m$ and we can see $x = 2n$. Thus $x \in T$, $S \subseteq T$.

Let *A* = { $n \in \mathbb{N}$: 4|($n-3$)} and *B* = { $2k+1$: $k \in \mathbb{Z}$ }. Prove *A* ⊆ *B*.

Let $x \in \mathbb{N}$ since $x \in A$. Then $4|(x-3)$, such that $j \in \mathbb{Z}$

$$
4j = x - 3\nx = 4j + 3\n= 4j + 2 + 1\n= 2(2j + 1) + 1\n\frac{x}{2}
$$

since $j \in \mathbb{Z}, 2j + 1 \in \mathbb{Z}.k = 2j + 1, x = 2k + 1, x \in B$ Given *S* & *T*, prove $S = T$. Prove $S \subseteq T$ and $T \subseteq S$. Show $\forall x \in \mathcal{U}, (x \in S) \implies (x \in T) \land (x \in T) \implies (x \in S)$ or $(x \in S) \iff (x \in T)$ Let $S = \{1, -1, 0\}$ and $T = \{x \in \mathbb{R} : x^3 = x\}$. Prove $S = T$ ⊆ Let *x* ∈ *S*. Then *x* = 1, −1, 0. When $x = 1$, $(1)^3 = 1$. . . So $x \in S \implies x \in T$ ⊇ Let $x \in T$. Then $x^3 = x$ or $x^3 - x = 0, x(x - 1)(x + 1) = 0$. *x* must be 0*,* −1*,* or 1 *...* $x \in S$. $T \subseteq S$. Since we have shown both $S \subseteq T$ and $S \supset T$, $S = T$. Proving General Statements Prove $A \cap B \subseteq A$ Proof: Let $x \in A \cap B$, then $x \in A$ and $x \in B$. Thus $x \in A \cap B \implies x \in A$ so $A \cap B \subseteq A$. Prove that $S = T$ if and only if $S \cap T = S \cup T$ (\rightarrow) Assume $S = T$. Then $S \subseteq T$ and $T \subseteq S$. \subseteq Let $x \in S \cap T$. Then $x \in S$ and $x \in T$ so $x \in S \cup T$ \supseteq Let $x \in S \cup T$. Then $x \in S$ or $x \in T$. If $x \in S$, since $S \subseteq T$, then $x \in T$ and vice versa. Thus $x \in S \cup T, x \in S \cap T$. (←) Assume *S* ∩ *T* = *S* ∪ *T* \subseteq Let $x \in S$. Then $x \in S \cup T \implies x \in S \cap T$ so $x \in T$. \supseteq Let $x \in T$. Then $x \in S \cup T \implies x \in S \cap T$ so $x \in S$. We have shown it both ways so $S \subseteq T$ and $T \subseteq S$, $S = T$.

6 The Greatest Common Divisor

Bounds by Divisibility For all $a, b \in \mathbb{Z}$, if $b|a$ and $a \neq 0$, then $b \leq |a|$ Proof Let $a, b \in \mathbb{Z}$ Assume $b|a$ and $a \neq 0$ Then there exists $q \in \mathbb{Z}$ such that $bq = a$. From this we get $|bq| = |a|$ This tells us $|b||q| = |a|$ Since $a \neq 0$ m then $q \neq 0$. Since $q \in \mathbb{Z}, q \neq 0$, then $|q| > 1$ Sub into equation to get $|b| \leq |a|$

17

Since $b \leq |b|$, so $b \leq |a|$.

6.1 Division Algorithm

For all $a \in \mathbb{Z}$ and for all $b \in \mathbb{N}$ there exists unique integers q and r such that

$$
a = bq + r \quad \text{where } 0 \le r < b
$$

Examples

$$
a = 50, b = 8 \quad 50 = 8 \cdot \underbrace{6}_{q} + \underbrace{2}_{r}
$$

$$
a = 40, b = 8 \quad 40 = 8 \cdot 5 + 0
$$

$$
a = -50, b = 8 \quad -50 = 8 \cdot (-7) + 6
$$

6.2 Greatest Common Divisor (GCD)

```
Divisors of 84 : ±1, ±2, ±3, ±4, ±6, ±7, ±12, ±14, ±21, ±28, ±42, ±84
```
Divisors of 60 : ±1*,* ±2*,* ±3*,* ±4*,* ±5*,* ±6*,* ±10*,* ±12*,* ±15*,* ±20*,* ±30*,* ±60

 $gcd(84, 60) = 12$

Formal Definition

 $Let a, b \in \mathbb{Z}$

When *a* and *b* are not both zero, we say an integer *d >* 0 is the greatest common divisor of *a* and *b*, and write $gcd(a, b)$ iff

- *d*|*a* ∧ *d*|*b*
- for all integers *c*, if $c|a$ and $c|b$ then $c \leq d$

Otherwise, we say $gcd(0, 0) = 0$

Examples

- $gcd(84, 60) = 12$
- $gcd(-84, 60) = 12$
- $gcd(84, -60) = 12$
- $gcd(-84, -60) = 12$
- $gcd(84, 0) = 84$
- $gcd(-84, 0) = 84$

Fact

For all $a, b \in \mathbb{Z}$, $gcd(3a + b, a) = gcd(a, b)$

Proof

Let $a, b \in \mathbb{Z}$. Let $d = \gcd(a, b)$

$$
\underline{\text{Case 1}}\ a = b = 0
$$

In this case, by definition, $d = 0$

Also $3a + b = 0$ and $a = 0$ in this case, thus $gcd(3a + b, a) = 0$ as well.

Case 2 $a \neq 0$ or $b \neq 0$

Note that $3a + b \neq 0$ or $a \neq 0$ in this case as well. Since $d = \gcd(a, b)$, we know $d > 0$ and $d | a$. We get $d|(3a + b)$ by DIC since we also know $d|b$.

To complete the proof we let $c \in \mathbb{Z}$ and assume $c|(3a + b)$ and $c|a$

All we must show is $c \leq d$. Using DIC again we get c |[(3*a* + *b*)(1) + *a*(−3)] *c*|*b* Hence by definition of $gcd(a, b)c \leq d$. GCD with Remainders (GCD w R) For all $a, b, q, r \in \mathbb{Z}$, if $a = bq + r$ then $gcd(a, b) = gcd(b, r)$ Example $86 = 20(7) - 54$ $gcd(86, 20) = 2$ $gcd(20, -54) = 2$ Alternative proof of our fact Clearly $3a + b = 3a + b$ By GCD w R, $qcd(3a + b, a) = qcd(a, b)$ Euclidean Algorithm (EA) Process to compute $qcd(a, b)$ for $a, b \in \mathbb{N}$ $84 = 60(1) + 24$ *gcd*(84,60) $60 = 24(2) + 12 = \gcd(60, 24)$

$$
24 = 12(2) + 0 = gcd(24, 12)
$$

$$
gcd(12, 0) = \underline{12}
$$

The last non-zero will be GCD since remainder is non-negative and *< b*. Bigger example: Compute *gcd*(1239*,* 735)

$$
1239 = (735)(1) + 504
$$

\n
$$
735 = 504(1) + 231
$$

\n
$$
504 = 231(2) + 42
$$

\n
$$
231 = 42(4) + 21
$$

\n
$$
42 = 21(2) + 0
$$

\n
$$
\implies \gcd(1239, 735) = 21
$$

Back Substitution

 $21 = 231 + 42(-5)$ $= 231 + (-5)(504 + 231(-2))$ $= 504(-5) + 231(11)$ $= 504(-5) + (11)(735 - 504)$ $= 735(11) + 504(-16)$ $= 735(11) + (-16)(1239 - 735)$ $= 1239(-16) + 735(27)$

6.3 Certificate of Correctness and Bézout's Lemma

For all $a, b, d \in \mathbb{Z}$ where $d \geq 0$. If $d | a$ and $d | b$ and there exists $s, t \in \mathbb{Z}$ such that $as + bt = d$ then $d = \gcd(a, b).$

Example

 $d = 6, a = 30, b = 42$ $b \ge 0, 6|30, 6|42$

 $6 = 30(3) + 42(-2)$ \implies 6 = *gcd*(30, 42) Bézout's Lemma For all integers $a, b \in \mathbb{Z}$, there exists $s, t \in \mathbb{Z}$ such that $as + bt = gcd(a, b)$ GCD w R $a = bq + r$ then $gcd(a, b) = gcd(b, r)$ GCD CT If $d > 0$, $d|ad|b$ and s, t exists $as + bt = d$, then $d = \gcd(a, b)$ BL If $d = \gcd(a, b)$, there exists $x, y \in \mathbb{Z}$ such that $ax + by = d$ Example For all $n \in \mathbb{Z}$, $gcd(n, n + 1) = 1$ Proof 1 Since $n + 1 = n(1) + 1$, GCD w R gives us $gcd(n+1, n) = gcd(n, 1)$. However $gcd(n, 1) = 1$ because 1 is the only positive divisor of 1 Proof 2 Since $(n + 1)(1) + n(-1) = 1, 1 \ge 0$ $1|n+1$ and $1|n$, then $gcd(n+1, n) = 1$ by GCD CT. Proof 3 Suppose $d \in \mathbb{Z}$, $d|(n+1)$ and $d|n$ then by DIC, $d|1|(n+1)(1) + n(-1) = 1$ Thus 1 is the only divisor, that is GCD = 1. Example Let $a, b, x, y \in \mathbb{Z}$, where $gcd(a, b) \neq 0$. If $ax + by = gcd(a, b)$ then $gcd(x, y) = 1$. Proof Let $a, b, x, y \in \mathbb{Z}$. Assume $gcd(a, b) \neq 0$ and $ax + by = gcd(a, b)$ Division gives $\left(\frac{a}{\gcd(a,b)}\right)x + \left(\frac{b}{\gcd(a,b)}\right)y = 1$ since $\gcd(a,b) \neq 0$ Since $\frac{a}{gcd(a,b)}, \frac{b}{gcd(a,b)} \in \mathbb{Z}$ Moreover $1 \geq 0, 1 | x and 1 | y$ Thus by GCD LT, $gcd(x, y) = 1$ Example For all $a, b, c \in \mathbb{Z}$ If $gcd(a, c) = 1$ then $gcd(ab, c) = gcd(b, c)$ Proof Let $a, b, c \in \mathbb{Z}$. Assume $gcd(a, c) = 1$. Let $d = gcd(b, c)$ By BL, there are integers *x, y, s, t* such that $ax + cy = 1$ and $bs + ct = d$ multiply to get

 $(ax + cy)(bs + ct) = d$

Thus

 $ab(xs) + c(axt + ybs + yct) = d$

Since $xs,$ $ext+ ybs+ yct$ are integers, $d \ge 0$ (by definition), $d|c$ (by definition), $d|ab$, we get $d = gcd(ab, c)$ by GCD CT.

6.4 Extended Euclidian Algorithm

Solve $56x + 35y = \gcd(56, 35)$ for $x, y \in \mathbb{Z}$

Thus $gcd(36, 35) = 7, x = 2, y = -3$

EEA with 408 and 170

Solve $-170x + 408y = d$ for $x, y \in \mathbb{Z}$ and $d = gcd(-170, 408)$

Order is irrelevant for gcd.

From before $d = 34$ and $x = -5, y = -2$

6.5 Further Properties of the Greatest Common Divisor

Proof of CDD GCD (Common Divisor Divides)

Let $a, b, c \in \mathbb{Z}$. Assume $c|a$ and $c|b$. By BL, $ax + by = gcd(a, b)$ for some $x, y \in \mathbb{Z}$ By DIC, $c|ax + by$. That is $c|gcd(a, b)$. Definition Let $a, b \in \mathbb{Z}$ When $gcd(a, b) = 1$, we say *a* and *b* are coprime. Coprimeness Characterization Theorem *a* and *b* are coprime iff there exists integers *s* and *t* with $as + bt = 1$. Sketch of CCT Proof \implies BL ⇐= GCD CT Exercise Let $a, b, c \in \mathbb{Z}$.

If $gcd(a, b, c) = 1$, then $gcd(a, c) = 1$ and $gcd(b, c) = 1$ a) Prove or disprove Let $a, b, c \in \mathbb{Z}$. Assume $gcd(a, b) = 1$. By CCT, $(ab)s + ct = 1$ for some $s, t \in \mathbb{Z}$ Since *bs, t* $\in \mathbb{Z}$ *, gcd*(*a*, *c*) = 1 by CCT Since $as, t \in \mathbb{Z}$, $gcd(b, c) = 1$ by CCT b) Prove or disprove the converse If $gcd(a, c)$ and $gcd(b, c)$, then $gcd(ab, c) = 1$ Let $a, b, c \in \mathbb{Z}$. Assume $gcd(a, c) = gcd(b, c) = 1$. By CCT, $as + ct = 1$ and $bx + cy = 1$ for some $s, t, x, y \in \mathbb{Z}$ Multiply to yield $(as + ct)(bx + cy) = 1$ After expanding and rearranging, CCT gives us $gcd(a, b) = 1$ because $sx, asy + tyx + txy \in \mathbb{Z}$. Division by GCD (DB GCD) If $gcd(a, b) = d \neq 0$ then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$. Let $a, b \in \mathbb{Z}$ such that $gcd(a, b) = d \neq 0$. By BL, $ax + by = d$ for some $x, y \in \mathbb{Z}$. Divide by d $\frac{a}{d}x + \frac{b}{d}y = 1$, since $d \neq 0$ Note $d|a$ and $b|d$ by definition of d , so $\frac{a}{d}$, $\frac{b}{d}$ are \mathbb{Z} . Thus $(\frac{a}{d}, \frac{b}{d}) = 1$ by CCT Proof of Coprimeness and Divisibility (CAD) If a, b and c are integers and $c|ab$ and $gcd(a, c) = 1$, then $c|b$. Proof Let $a, b, c \in \mathbb{Z}$. Assume $c|ab$ and $gcd(a, c) = 1$ $ax + cy = 1$ by CCT for some $x, y \in \mathbb{Z}$ Multiply both sides by *b* to get $abx + cby = b$ We know $c|c$ and we assumed $c|ab$ so by DIC, $c|[(ab)x + (c)by]$ (because $x, by \in \mathbb{Z}$). That is, *c*|*b* Note $\forall a, b, c \in \mathbb{Z}, (c|ab) \implies (c|a \vee c|b)$ is <u>false</u>.

6.6 Prime Numbers

Prime Factorization

Every integer greater than 1, can be written as the product of primes.

Proof

Proceed by Strong Induction (can't use POMI) to prove that an integer *n >* 1 can always be written as a product of primes.

Base Case

When $n = 2$, *n* by itself is a product of primes since 2 is prime.

Inductive Step

Let *k* be an arbitrary integer greater than 2.

Assume *i* can be written as the product of primes for all integers *i* such that $2 \le i \le k$.

We will consider cases for $n = k + 1$

When $k + 1$ is prime, there is nothing to prove.

Otherwise, $k+1$ is composite.

That is $k + 1 = ab$ for some $a, b \in \mathbb{Z}$ satisfying $1 < a, b < k + 1$

By our inductive hypothesis, *a* and *b* can each be written as the product of primes. Multiplying these products gives a product of primes equal to $k + 1$. Hence the statement is true by POSI.

Euclid's Theorem

There are infinitely many primes.

Proof

By way of contradiction, assume there are a finite number of primes. We will name them p_1, p_2, \ldots, p_k for some $k \in \mathbb{N}$.

Consider $N = (p_1 \cdot p_2 \dots p_k) + 1$

By PF, $p_i|N$ for some $i \in \{1, 2, ..., k\}$

However, also $p_i|(p_1 \cdot p_2 \dots p_k)$ by definition.

By DIC, we get $p_i|N - (p_1 \cdot p_2 \dots p_k)$

That is, $p|1$. This is a contradiction because 1 is the only positive divisor of 1.

Euclid's Lemma

For all $a, b \in \mathbb{Z}$ and primes p, if $p|ab$, then $p|a$ or $p|b$.

Proof

Let $a, b \in \mathbb{Z}$. Let p be prime.

Assume $p|ab$ and $p \nmid a$ (elimination).

Since the only positive divisors of *p* are 1 and *p*, and $p \nmid a, \gcd(a, p) = 1$.

Thus $p|b$ by CAD.

6.7 Unique Factorization Theorem

Every natural number *>* 1 can be written as a product of prime factors uniquely, apart from order.

Example

Let *p* be prime. Prove that $13p + 1$ is a perfect square iff $p = 11$. If $p = 11, 13(11) + 1 = 144 = 12² \checkmark$ Other direction: $13p + 1 = k^2$ $13p = (k+1)(k-1)$ $UFT \to 13 = k + 1$ or $13 = k - 1$ $k = 12\checkmark$ or $k = 14$ (wrong).

6.8 Prime Factorization and the Greatest Common Divisor

If $a = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ and $b = p_1^{\beta_1} \dots b = p_k^{\beta_k}$ where p_1, p_2, \dots, p_k are primes and all exponents are nonnegative.

$$
gcd(a, b) = p_1^{\gamma_1} p_2^{\gamma_2} \dots
$$
 where $\gamma_i = min\{\alpha_i, \beta_1\}$ for $i \dots k$

Examples

```
gcd(13^2 \cdot 7^{100}, 16^3 \cdot 7^{44})gcd(7^{100}11^013^2, 7^{44}11^313^0)= 7^{44} \cdot 11^0 \cdot 13^0= 7^{44}
```
And

```
gcd(20000, 30000)
gcd(2^5 5^4, 2^4 3^1 5^4)= 2^4 \cdot 5^4 \cdot 3^0= 2^4 \cdot 5^4= 10000
```
7 Linear Diophantine Equations

7.1 The Existence of Solutions in Two Variables

Given $a, b, c \in \mathbb{Z}$, find $x, y \in \mathbb{Z}$ such that $ax + by = c$

- Is there a solution? LDET 1
- If so, how can we find one? EEA
- And can we find all solutions? LDET 2

Examples of

- 1. $143x + 253y = 11$
- 2. $143x + 253y = 155$
- 3. $143x + 253y = 154$

1) Use EEA

Thus $\{(-7+23n, 4-13n) : n \in \mathbb{Z}\}\$

Thus $143(-7) + 253(4) = 11, (-7, 4)$ is a solution.

2) There is no solution because $x, y \in \mathbb{Z}$, 11 $\left[\left(143x + 253y\right)$ but 11 $\left|155\right\rangle$ (not a multiple of 11).

3) Multiply equation in 1) by $\frac{154}{11} = 14$ to get:

 $143(-98) + 153(56) = 154$

Other solutions to 1)?

Rewrite as $y = \frac{-13}{23}x + \frac{1}{23}$

LDET 1

Let $a, b \in \mathbb{Z}$ (both not zero) and let $d = \gcd(a, b)$ the LDE $ax + by = c$ has a solution if and only if $d|c$. First, suppose there exists $x, y \in \mathbb{Z}$ such that $ax + by = c$.

We know $d|a$ and $d|b$ (by definition of gcd), so $d|c$ by DIC.

Next we suppose $d|c$ to prove the other direction.

By BL there exists $s, t \in \mathbb{Z}$ such that $as + bt = d$.

Now we also know $dk = c$ for some integer k. Multiplying by k gives

$$
a(bk) + b(tk) = dk = c
$$

Since sk and $tk, \in \mathbb{Z}$, the proof is complete.

7.2 Finding All Solutions in Two Variables LDET 2

Let $gcd(a, b) = d$ where $a \neq 0, b \neq 0$.

If $(x, y) = (x_0, y_0)$ is one solution to the LDE $ax + by = c$, then the complete solution is

$$
\{(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n) : n \in \mathbb{Z}\}\
$$

LDET 2 Example

We found that $(x, y) = (-7, 4)$ was a particular solution to $143x + 253y = 11$. LDET 2 tells us the complete solution is { $(-7 + \frac{253}{11}n, 4 - \frac{143}{11}n) : n \in \mathbb{Z}$ } $= \{(-7 + 23n, 4 - 13n) : n \in \mathbb{Z}\}\$

Examples of some solutions are:

$$
n = 0 \quad (-7, 4)
$$

\n
$$
n = 1 \quad (16, -9)
$$

\n
$$
n = -1 \quad (-30, 17)
$$

Exercise

Solve the following LDEs:

1) $28x + 35y = 60$

 $7 \nmid 60$, no solutions.

2) $343x + 259y = 658$

$$
343(-3) + 259(4) = 7
$$

\n
$$
343(-3 \cdot 94) + 259(4 \cdot 94) = 7 \cdot 94
$$

\n
$$
343(282) + 259(376) = 658
$$

\n
$$
\{(-3 + 37n, 4 + 49n) : n \in \mathbb{Z}\}\
$$

LDET 2 Proof

Let $a, b, c \in \mathbb{Z}$ where $d = \gcd(a, b), a \neq 0$ and $b \neq 0$. Assume $ax_0 + by_0 = c$ for some $x_0, y_0 \in \mathbb{Z}$. Define $S = \{(x, y) : ax + by = c \text{ and } x, y \in \mathbb{Z}\}\$ and $T = \{(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n) : n \in \mathbb{Z}\}\$ Must show how $S = T(S \subseteq T, T \subseteq S)$

We begin by showing $T \subseteq S$. Let $n \in \mathbb{Z}$. We must show $(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n) \in S$. To do this we substitute into $ax + by$ to get $a(x_0 + \frac{b}{b})$ $\frac{b}{d}n$) + *b*(*y*₀ – $\frac{a}{d}$ $\frac{a}{d}n$) = $ax_0 + by_0 = c$ Indeed $T \subseteq S$. Now we must show $S \subseteq T$. Let $(x, y) \in S$. Then $ax + by = c$. We also know $ax_0 + by_0 = c$. Equating gives $ax - ax_0 = -by + by_0$ Thus $a(x - x_0) = -b(y - y_0)(\star)$ Since $d \neq 0$, we divide and get the following. $\frac{a}{d}(x-x_0) = \frac{-b}{d}(y-y_0)$ This tells us $\frac{b}{d}$ $\left| \frac{a}{d}(x - x_0) \right|$ By DBGCD, $gcd(\frac{a}{d}, \frac{b}{d}) = 1$. By CAD, we know $\frac{b}{d} |(x - x_0)$. Thus $\frac{b}{d} |(x - x_0)$. Thus $\frac{b}{d}n = x - x_0$ for some $n \in \mathbb{Z}$. That is $x = x_0 + \frac{b}{d}n$. Substitution into (\star) yields $y = y_0 - \frac{a}{d}n$. Thus $(x, y) \in T$. Exercise Find all $x, y \in \mathbb{Z}$ satisfying $15x - 24y = 9$ $0 \le x, y \le 20$. We will solve the LDE first. Note that it is equivalent to $5x - 8y = 3$ By inspection, a solution (7,4). So by LDET 2, the complete solution is $x = -1 - 8n$ and $y = -1 - 5n$ where $n \in \mathbb{Z}$ We also need $-1 - 8n \geq 0 \implies n \leq -1$ $-1 - 8n \leq 20 \implies n \geq -2$ $-1 - 5n \geq 0 \implies n \leq -1$ $-1 - 5n \leq 20 \implies n \geq -4$ Thus $n = -1$ or $n = -2$.

8 Congruence and Modular Arithmetic

8.1 Congruence

−1 is congruent to 7 modulo 8. Definition

Thus the final answer is $\{(7, 4), (15, 9)\}$

Let $a, b \in \mathbb{Z}$. Let $m \in \mathbb{N}$. We say *a* is congruent to *b* module *m* when $m|(a-b).$ We write

 $a \equiv b \pmod{m}$

Otherwise we write $a \not\equiv b \pmod{m}$.

Examples

 $-1 \equiv 7 \pmod{8}$ $-1 \equiv -1 \pmod{8}$ $-1 \equiv 15 \pmod{8}$ $15 \equiv -1 \pmod{8}$ $15 \equiv 7 \pmod{8}$ Let $a, b \in \mathbb{Z}$. Let $m \in \mathbb{N}$

$$
a \equiv b \pmod{m}
$$

$$
\iff m|(a - b)
$$

$$
\iff \exists k \in \mathbb{Z}, mk = a - b
$$

$$
\iff \exists k \in \mathbb{Z}, a = mk + b
$$

8.2 Elementary Properties of Congruence

Let $a, b, c \in \mathbb{Z}$. Let $m \in \mathbb{N}$. Reflexive: $a \equiv a \pmod{m}$ Symmetric: $a \equiv b \pmod{m} \implies b \equiv a \pmod{m}$ Transitivity: $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m} \implies a \equiv c \pmod{m}$ Proof of Reflexivity: Since $a - a = 0$ and $m0 = 0$, we have $m|(a - a)$. That is $a \equiv a \pmod{m}$. Proof of Symmetric: Assume $a \equiv b \pmod{m}$ This means $mk = a - b$ for some $k \in \mathbb{Z}$. $m(-k) = b - a$. Since $-k \in \mathbb{Z}, m|(b-a)$. That is $b \equiv a \pmod{m}$. Proof of Transitivity: Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. $m|(a - b), m|(b - c).$ By DIC, $m|(a-c)$. That is $a \equiv c \pmod{m}$. Proposition 2 If $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, then 1. $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$ 2. $a_1 - a_2 \equiv b_1 - b_2 \pmod{m}$ 3. $a_1 a_2 \equiv b_1 b_2 \pmod{m}$

Proof of 1.

 $mk = a_1 - b_1$ $m\ell = a_2 - b_2$

$$
a_1 + a_2 = (mk + b_1) + (m\ell + b_2)
$$

= $m \underbrace{(k + \ell)}_{\in \mathbb{Z}} + b_1 + b_2$

Proof of 3.

$$
a_1 a_2 = (mk + b_1) + (ml + b_2)
$$

= $(b_1 \cdot b_2) + m \underbrace{(\dots)}_{\text{some integer}}$

CAM (Generalization of Proposition 2)

For all positive integers *n*, for all integers $a_1 \nldots a_n$ and $b_1 \nldots b_n$, if $a_i \equiv b_i \pmod{m}$ for all $1 \leq i \leq n$ then

$$
a_1 + a_2 + \ldots + a_n \equiv b_1 + b_2 \ldots + b_n \pmod{m}
$$

$$
a_1 a_2 \ldots a_n \equiv b_1 b_2 \ldots b_n \pmod{m}
$$

Congruence of Power

For all positive integers *n* and $a, b \in \mathbb{Z}$. $a \equiv b \pmod{m} \implies a^n \equiv b^n \pmod{m}.$ Question: Does 7 divide $5^9 + 62^{2000} - 14$ Is $5^9 + 62^{2000} - 14 \equiv 0 \pmod{7}$? We will "reduce modulo 7" $-14 \equiv 0 \pmod{7}$

$$
\implies 5^9 + 62^{2000} - 14 \equiv 5^9 + 62^{2000} + 0 \pmod{7}
$$

$$
\equiv 5^9 + (-1)^{2000} \pmod{7} \leftarrow \text{ by CP}
$$

$$
\equiv 5^9 + 1 \pmod{7}
$$

$$
\equiv (-2)^9 + 1 \pmod{7}
$$

$$
\equiv (-2)^3(-2)^3(-2)^3 + 1 \pmod{7}
$$

$$
\equiv (-1)(-1)(-1) + 1
$$

$$
\equiv 0 \pmod{7}
$$

Congruence and Division

Examples

Let $a, b, c \in \mathbb{Z}$. Let $m \in \mathbb{N}$.

If $ac \equiv bc \pmod{m}$ and $gcd(c, m) = 1$ then $a \equiv b \pmod{m}$.

Examples

1) $3 \equiv 24 \pmod{7}$ $1 \equiv 8 \pmod{7}$ 2) $3 \equiv 27 \pmod{6}$ $1 \not\equiv 9 \pmod{6}$

Does 72 divide $4(-66)^{2022} + 800$ By CAR, CAM and CP:

$$
4(-66)^{2022} + 800 \equiv 2(-6)^2 2(-11)^2(-66)^{2020} + 800
$$

$$
\equiv 0 + 8 \pmod{72}
$$

$$
\equiv 8 \pmod{72}
$$

But $8 \not\equiv 0 \pmod{72}$

Thus by CER, our number is not congruent to 0 modulo 72. Thus it does not.

Proof of CD

Let $a, b, c \in \mathbb{Z}$. Let $m \in \mathbb{N}$.

Assume $ac \equiv bc \pmod{m}$ and $gcd(c, m) = 1$.

Then $m|(ac - bc)$ or equivalently $m|c(a - b)$.

By CAD, $m|(a - b)$. That is, $a \equiv b \pmod{m}$.

8.3 Congruence and Remainders

Congruent iff Same Remainder (CISR) and Congruent to Remainder (CTR) Examples

1) What is the remainder when $x = 77^{100}(999) - 6^{83}$ is divided by 4.

We will find *r* such that $0 \leq r < 4$ and $x \equiv r \pmod{4}$. By CTR, this will be our answer. By CER, CAM, and CP:

$$
x \equiv 1^{100}(-1) - 36 \cdot 6^{81} \pmod{4}
$$

\n
$$
x \equiv -1 \pmod{4}
$$

\n
$$
\equiv 3 \pmod{4}
$$

The answer is 3.

2) What is the last digit (units) of $x = 5^{32}3^{10} + 9^{22}$ The answer will be *r* such that $x \equiv r \pmod{10}$ and $0 \le r < 10 \text{ (By (TR))}$.

By CER, CAM, and CP

$$
x \equiv (5^2)^{16} (3^2)^5 + (-1)^{22} \pmod{10}
$$

\n
$$
\equiv (5^2)^8 (-1)^5 + 1 \pmod{10}
$$

\n
$$
\equiv (5^2)^4 (-1) + 1
$$

\n
$$
\equiv -5 + 1 \pmod{10}
$$

\n
$$
\equiv 6 \pmod{10}
$$

The answer is 6.

Proof of CISR Let $a, b \in \mathbb{Z}$. Let $m \in \mathbb{N}$. By DA, $a = mq_a + r_a, \quad 0 \leq r_a < m$ $b = mq_b + r_b, \quad 0 \le r_b < m$ Then, $a - b = m(q_a - q_b) + (r_a - r_b)$ where $-m < r_a - r_b < m$ Now we assume $r_a = r_b$.

Thus, $m|(a - b)$ by our equation for $a - b$. That is $a \equiv b \pmod{m}$.

Next, we assume $a \equiv b \pmod{m}$.

Then $mk = a - b$ for some $k \in \mathbb{Z}$.

Substituting and rearranging gives,

 $m(k - q_a + q_b) = r_a - r_b$

So $m|(r_a-r_b)$ since $k-q_a+q_b \in \mathbb{Z}$. Thus $r_a-r_b=0$ by our inequality for r_a-r_b . We get $r_a=r_b$, completing the proof.

CTR

For all a, b with $0 \leq b < m$, $a \equiv b \pmod{m}$ iff *a* has remainder *b* when divided by *m*.

 $m|(a-b)$ if $a=mr+b$

Divisibility Tests

Let $n \geq 0$ be an integer. Then we can write.

 $n = d_k 10^k + d_{k-1} 10^{k-1} + \ldots d_1 10 + d_0$ for digits $d_k, d_{k-1}, \ldots, d_1, d_0$

What about 3?

Since $10 \equiv 1 \pmod{3}$. $n \equiv d_k + d_{k-1} + \ldots + d_1 + d_0 \pmod{3}$

Thus, by CER

 $n \equiv 0 \pmod{3}$ iff $d_k + d_{k-1} + \ldots + d_1 + d_0 \equiv 0 \pmod{3}$.

$$
9?
$$

 $10 \equiv 1 \pmod{9}$ so we can deduce that *n* is divisibly by 9 iff the sum of its digits are divisible by *n*. e.g. 4456217395

 $4+4+5+6+2+1+7+3+9+5=46$. 46 is not divisible by 9, the number is not divisible by 9. 11?

8217993

 $8 - 2 + 1 - 7 + 9 - 9 + 3 = 3$ $10 \equiv -1 \pmod{11}$

8.4 Linear Congruences

Let $m \in \mathbb{N}$. Let $a, c \in \mathbb{Z}$ where $a \neq 0$. Find all $x \in \mathbb{Z}$ such that

 $ax \equiv c \pmod{m}$

- Is there a solution?
- If so can we find one?
- If so can we find them all?

Example

Solve $4x \equiv 5 \pmod{8}$

 \Leftrightarrow 8|(4*x* − 5) \Leftrightarrow 8*k* = 4*x* − 5 for some *k* ∈ Z ⇐⇒ 4*x* − 8*k* = 5 for some *k* ∈ Z \Leftrightarrow 4*x* = 8*y* = 5 for some *y* $\in \mathbb{Z}$ Linear Diophantine \implies *gcd*(4,8) = 4. 4 \nmid 5. ∴ no solution, ∴ no *x*−values.

 $5x \equiv 3 \pmod{7}$

Rewrite

$$
5x + 7y = 3 \implies x \in \{2 + 7n : n \in \mathbb{Z}\}\
$$

$$
gcd(5, 7) = 1 \quad 1 \mid 3\checkmark
$$

Answer in congruence is $x \equiv 2 \pmod{7}$.

By CTR, every integer is congruent to $\{0, 1, 2, 3, 4, 5, 6\}.$

Try all of them and see which one works.

By CER, CAM, if x_0 is a solution, $x \equiv x_0 \pmod{7}$ are solutions.

GCD is the number of solutions in the set $\{0, 1, 2, \ldots\}$

$$
2x \equiv 4 \pmod{6}
$$

2(0) $\not\equiv 4 \pmod{6}$
 \vdots
2(2) $\equiv 4 \pmod{6}$
 \vdots
2(5) $\equiv 4 \pmod{6}$

Complete solution is $x \equiv 2, 5 \pmod{6}$.

Using LDE's we get $\{2+3n : n \in \mathbb{Z}\}.$

Complete solution is $x \equiv 2 \pmod{3}$.

 $x \equiv 2,5 \pmod{6}$ and $x \equiv 2 \pmod{4}$ represent the exact same set of integers.

Linear Congruence Theorem (LCT)

Complete solution $\{x \in \mathbb{Z} : x \equiv x_0 \pmod{\frac{m}{d}}\}$ equivalently,

$$
\{x \in \mathbb{Z} : x \equiv x_0, \underbrace{x_0 + \frac{m}{d}, x_0 + 2\frac{m}{d}, \dots, x_0 + (d-1)\frac{m}{d}\}}_{d \text{ number of solutions}}
$$

Informally, LCT tells us there

- is one solution modulo $\frac{m}{d}$ or
- *d* solutions modulo *m*

Solve $9x \equiv 6 \pmod{15}$

 $d = \gcd(9, 15) = 3, 3|6\checkmark$ ${x \in \mathbb{Z} : x \equiv 4 \pmod{5} }$

8.5 Congruence Classes and Modular Arithmetic

Definition

Let $m \in \mathbb{N}$. Let $a \in \mathbb{Z}$.

The congruence class of *a* modulo *m* is

$$
[a] = \{x \in \mathbb{Z} : x \equiv a \pmod{m}\}
$$

Example

Let $m=5$

The congruence class of 3 modulo 5 is:

$$
[3] = \{x \in \mathbb{Z} : x \equiv 3 \pmod{5}\}
$$

= $\{\dots, -12, -7, -2, 3, 8, 13, 18, 23, \dots\}$ infinite set of integers

- [3] is an infinite set
- $[3] = [23] = [-7]$ (both subsets of each other)
- + [3] is our most common representative from this set because $0\leq 3\leq 5$

Operations

Let $m \in \mathbb{N}$. Let $a, b \in \mathbb{Z}$. We define

$$
[a] + [b] = [a + b]
$$

$$
[a][b] = [ab]
$$

Examples $(m = 5)$

Note

Addition is well-defined

 $[8] + [31] = [39] = [4]$

 $[-7] + [16] = [9] = [4]$

Multiplication is as well.

Definition

Let $m \in \mathbb{N}$. The integers modulo m are

$$
\mathbb{Z}_m = \{ [0], [1], [2], \dots, [m-1] \} \quad |\mathbb{Z}_m| = m \text{ finite}
$$

$$
= \{ [x] : x \in \mathbb{Z} \}
$$

 $a \equiv b \pmod{m} \iff m|(a-b) \iff \exists k \in \mathbb{Z}, a-b = km \iff \exists k \in \mathbb{Z}, a = km + b$ \iff *a* and *b* have the same remainder when divided by $m \iff [a] = [b]$ in \mathbb{Z}_m

Let $[a] = \mathbb{Z}_n$ where $m \in \mathbb{N}$.

[0] is the additive identity $[a] + [0] = [a]$ [1] is the multiplication identity $[a][1] = [a]$ [−*a*] is the additive inverse of $[a]$ \implies $[a] + [-a] = [0]$ Multiplicative inverse of [*a*] (if exists) is an elem [*b*] such that $[a][b] = [b][a] = [1]$ and we write $[b] = [a]^{-1}$.

Examples

In \mathbb{Z}_{12} does $[5]^{-1}$ exist? Does $[6]^{-1}$ exist?

 $[5][x] = [1]$

 $[x] = [5]$ is a solution, so $[5]^{-1} = [5]$

 $[6][x] = [1]$. Only 12 combinations, none where $6x \equiv 1 \pmod{12}$.

Modular Arithmetic Solution

Let $gcd(a, m) = d \neq 0$.

The equation $[a][x] = [c]$ in \mathbb{Z}_n has a solution iff $d[c]$.

If $[x] = [x_0]$ is one solution, then there are *d* solutions given by,

$$
\{[x_0], [x_0 + \frac{m}{d}], [x_0 + 2\frac{m}{d}], \dots, [x_0 + (d-1)\frac{m}{d}]\}
$$

Review

 \mathbb{Z}_{10} , $[3] = [13] = [23] = [-17]$ In \mathbb{Z}_{10} , solve 1) $[12][x] + [3] = [8]$ $[2][x] = [5]$ has no solution. 2) $[15][x] + [7] = [12]$ $[5][x] = [5]$. $gcd(5, 10) = 5 \implies 5$ solutions. $\frac{10}{5} = 2$, spanned by 2 \downarrow [1]*,* [3]*,* [5]*,* [7]*,* [9] 3) $[9][x] + [1] = [8]$ $[9][x] = [7]$. $gcd(9, 10) = 1 \implies 1$ solution. $x = 3, 3 \cdot 9 = 27, 27 - 7 = 20.$ Inverses in \mathbb{Z}_m (INV \mathbb{Z}_m) Let $a \in \mathbb{Z}$ with $0 \le a \le m-1$. [*a*] $\in \mathbb{Z}_m$ has a multiplicative inverse iff $gcd(a, m) = 1$. Multiplicative inverse is unique.

Inverses in
$$
\mathbb{Z}_p
$$
 (INV \mathbb{Z}_p)

For all prime numbers *p* and $[a] \in \mathbb{Z}_p$ have a unique multiplicative inverse.

8.6 Fermat's Little Theorem (F*ℓ***T)**

Let *p* be prime. Let $a \in \mathbb{Z}$. If $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$. Examples $4^6 \equiv 1 \pmod{7} \quad 39^6 \equiv 1 \pmod{7}$ $13^2 \equiv 1 \pmod{7}$ but not by F ℓ T. Exercise What is the remainder when 7^{92} is divided by 11? Since 11 is prime and $11 \nmid 7, 7^{10} \equiv 1 \pmod{11}$.

 $7^{92} \equiv (7^{10})^9 \cdot 7^2 \equiv 1^9 \cdot 7^2 \equiv 49 \equiv 5 \pmod{11}$

By CAM, CER, CP. Thus, the remainder is 5.

Notes

We can write $a^{p-1} \equiv 1 \pmod{p}$ as $[a^{p-1}] = [1]$ in \mathbb{Z}_p . In this case $[a]^{-1} = [a^{p-2}]$ Idea of Proof of F*ℓ*T Let $a = 4$ and $p = 7$. $\{[4], [2 \cdot 4], [3 \cdot 4], [4 \cdot 4], [5 \cdot 4], [6 \cdot 4]\}$ $= \{ [4], [1], [5], [2], [6], [3] \}$ No zero, all distinct. Corollary to F*ℓ*T Let *p* be prime. Let $a \in \mathbb{Z}$. Then $a^p \equiv a \pmod{p}$ Proof Let p be prime. Let $a \in \mathbb{Z}$. We will use cases.

When $p \nmid a$, by $F \ell T$, $a^{p-1} \equiv 1 \pmod{p}$. Multiplying gives $a^p \equiv a \pmod{p}$ by CAM.

When $p|a, a \equiv 0 \pmod{p}$. Thus $a^p \equiv 0 \pmod{p}$ by CP. Thus $a^p \equiv a \pmod{p}$ by CER.

The statement is true in all cases. \blacksquare

Exercise

What is the remainder when $8^{(9^7)}$ is divided by 11.

$$
97 \equiv -1 \pmod{10}
$$

\n
$$
\equiv 9 \pmod{10}
$$

\n
$$
897 \equiv 810q+r \equiv (810)q8r \equiv 8r \pmod{11}
$$

Simultaneous Congruences Examples

Solve $x \equiv 2 \pmod{13}$, $x \equiv 17 \pmod{29}$. If moduli are coprime, always get one solution.

Rewrite the second statement as $x = 17 + 29k$ where $k \in \mathbb{Z}$.

Thus we want to find all *k* satisfying:

```
17 + 29j \equiv 2 \pmod{13}\Leftrightarrow 29k \equiv 11 \pmod{13}\Leftrightarrow 3k \equiv 11 (mod 13)
  \Leftrightarrow k \equiv 8 \pmod{13}\iff k = 8 + 13\ell \text{ for some } \ell \in \mathbb{Z}
```
Sub to get

$$
x = 17 + 29(8 + 13\ell)
$$

$$
x = 17 + 29 \cdot 8 + 29 \cdot 13\ell
$$

$$
x = 249 + 377\ell
$$

The solution is $x \equiv 249 \pmod{377}$

8.7 Chinese Remainder Theorem

Suppose $gcd(m_1, m_2) = 1$ and $a_1, a_2 \in \mathbb{Z}$

There is a unique solution module m_1m_2 to the system

$$
x \equiv a_1 \pmod{m_1}
$$

$$
x \equiv a_2 \pmod{m_2}
$$

That is, once we have one solution $x = x_0$, CRT also tells us the full solution is $x \equiv x_0 \pmod{m_1 m_2}$

Generalized CRT

If $m_1, m_2, \ldots, m_k \in \mathbb{N}$ and $gcd(m_i, m_j) = 1$ then for any integers there exists a solution to simultaneous congruences.

```
n \equiv a_1 \pmod{m_1}.
.
.
n \equiv a_k \pmod{m_k}
```
The complete solution is $n \equiv n_0 \pmod{m_1 m_2 \dots m_k}$

Exercises

 $x \equiv 4 \pmod{6}$, $x \equiv 2 \pmod{8}$.

Rewrite the second equation as $x = 2 + 8k$ where $k \in \mathbb{Z}$. Sub into the first equation to get

Since 1 is a solution, the full solution is $k \equiv 1 \pmod{3}$ by LCT.

Rewrite as $k = 1 + 3\ell$ where $\ell \in \mathbb{Z}$. Sub to get $x = 2 + 8(1 + 3\ell), x = 10 + 24\ell$. Final answer is $x \equiv 10 \pmod{24}$.

8.8 Splitting the Modulus

Let m_1 and m_2 be coprime positive integers. For any two integers x and a ,

$$
x \equiv a \pmod{m_1}, x \equiv a \pmod{m_2} \iff x \equiv a \pmod{m_1m_2}
$$

Exercise

What is the units digit of $8^{(9^7)}$?

Rough

$$
8^{(9^7)} \equiv r \pmod{10}
$$

\n
$$
r \equiv 8^{(9^7)} \pmod{2}
$$

\n
$$
r \equiv 8^{(9^7)} \pmod{5}
$$

\n
$$
r \equiv 0 \pmod{2}
$$

\n
$$
8^{(9^7)} \equiv 3^{(9^7)} \pmod{5}
$$

\n
$$
9 \equiv 1 \pmod{4}
$$

\n
$$
\therefore 9^7 \equiv 1 \pmod{4}
$$

\n
$$
\therefore 9^7 \equiv 4\ell + 1 \text{ for some } \ell \in \mathbb{Z}
$$

So we get

 $8^{(9^7)} \equiv 3^{4k+1} \equiv (3^4)^k \cdot 3 \equiv 1^k 3 \equiv 3 \pmod{5}$

To complete the problem, we solve

 $r \equiv 0 \pmod{2}$ $r \equiv 3 \pmod{5}$ $r \equiv 8 \pmod{10}$

 $8^{(9^7)} \equiv r \pmod{11}$, $8^{10} \equiv 1 \pmod{11}$ by $F\ell T$

9 The RSA Public-Key Encryption Scheme

Cool history lesson about [William Tutte](https://uwaterloo.ca/magazine/spring-2015/features/keeping-secrets)

 $Message \rightarrow encrypt to transmit cipher to decrypt to message$

Math functions (easy to encrypt), hard to decrypt (invert) without info.

RSA Scheme

Setup (Bob)

- 1. Randomly choose two large, distinct primes p and q and let $n = pq$
- 2. Select arbitrary integer e such that $gcd(e,(p-1)(q-1)) = 1$ and $1 < e < (p-1)(q-1)$
- 3. Solve $ed \equiv 1 \pmod{(p-1)(q-1)}$ for an integer *d* where $1 < d < (p-1)(q-1)$
- 4. Publish the public key (*e, n*)
- 5. Keep the private key (d, n) secret, and the primes p and q

Encryption (Alice does the following to send a message as ciphertext to Bob)

- 1. Obtain a copy of Bob's public key (*e, n*)
- 2. Construct the message M , an integer such that $0 \leq M < n$
- 3. Encrypt *M* as the ciphertext *C*, given by $C \equiv M^e \pmod{n}$ where $0 \le C < n$
- 4. Send *C* to Bob

Decryption (Bob does the following to decrypt)

- 1. Use the private key (d, n) to decrypt the ciphertext *C* as the received message *R*, given by $R \equiv C^d$ $(mod n)$ where $0 \leq R < n$
- 2. Claim: *R* = *M*

Setup

```
p = 2, q = 11, n = 22\phi(n) = 10(1 \times 10)e = 3 gcd(3, 10) = 1
3d \equiv 1 \pmod{10} \leftarrow ed \equiv 1 \pmod{\phi(n)} where 0 < d < \phi(n). d = 7.
Public key (e, n) \implies (3, 22).
Private key (d, n) \implies (7, 22).
Encryption
Generate message M where 0 \leq M < nM = 8C \equiv 8^3 \pmod{22} \quad 0 \le C < n\equiv (-2) \cdot 8 \pmod{22}
```
 $\equiv 6 \pmod{22}$

Decryption

```
R \equiv 6^7 \pmod{22} \quad 0 \le R < n\equiv (36)^{3}6 \pmod{22}\equiv 14^3 \cdot 6 \pmod{22}\equiv 84 \cdot 2^2 \cdot 7^2 \pmod{22}\equiv (-4) \cdot 6 \cdot 7 \pmod{22}\equiv 8 \pmod{22}
```
8 is the original message that Alice wanted to send.

Exercise

Let $p = 11, q = 13, e = 23$

- public key?
- private key?
- if $M = 13$ what is C ?

Public key: $(c, n) \rightarrow (23, 143)$

Private key: solve $23d \equiv 1 \pmod{10 \cdot 12}$, $d \equiv 47$

$$
C \equiv 13^{23} \pmod{143}
$$

\n
$$
\equiv 13^{16} 13^{4} 13^{2} 13^{1} \pmod{143}
$$

\n
$$
13^{2} \equiv 169 \equiv 26 \pmod{123}
$$

\n
$$
13^{4} \equiv 26^{2} \equiv \dots
$$

\n
$$
\vdots
$$

Square and multiply, then use SMT if you know *p* and *q*.

10 Complex Numbers

10.1 Standard Form

Complex Numbers $N \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

Examples

- $2 + 3i \leftarrow$ standard form $\mathbb{C} = \{x + yi : x, y \in \mathbb{R}\}\$
- $\frac{1}{2} + (-$ √ 2)*i*
- $0 + 0i = 0$
- $1 + 1i = 1 + i$

For $z = x + yi \in \mathbb{C}$, we call x the real part and y the imaginary part.

 $Re(z)$ and $Im(z)$

 $z = w$ means $Re(z) = Re(w)$ and $Im(z) = Im(w)$

 $z = 7 + 0i = 7 \implies \mathbb{R} \subsetneq \mathbb{C} \implies z$ is purely real

 $z = 7i \implies$ purely imaginary

Arithmetic

Addition:

 $(a + bi) + (c + di) = (a + c) + (b + d)i$ $(2+3i) + (1+2i) = 3+5i$

Multiplication:

 $(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$ $(2+3i)\cdot(5+4i) = ((2\cdot5)-(3\cdot4)) + ((2\cdot4)+(3\cdot5))i = -2+23i$ $(0+1i)\cdot(0+1i) = -1+0i$ $i^2 = -1$

Informally we can treat elements of $\mathbb C$ as "normal" algebraic expressions where $i^2 = -1$ and when we do that "everything works".

0 is the additive identity in C. $-z$ is the additive inverse of *z* in **ℂ**.

Subtraction

Let $w, z \in \mathbb{C}$. We define

$$
z - w = z + (-1 + 0i)w
$$

1 is the multiplicative identity in C. $\frac{a-bi}{a^2+b^2}$ is the unique multiplicative inverse of $a+bi \neq 0$

Division

$$
\frac{3+4i}{1+2i} = (3+4i)(1+2i)^{-1}
$$

$$
= (3+4i)(\frac{1-2i}{5})
$$

$$
= (3+4i)(\frac{1}{5} - \frac{2}{5}i)
$$

$$
= (\frac{3}{5} + \frac{8}{5}) - \frac{2}{5}i
$$

$$
= \frac{11}{5} - \frac{2}{5}i
$$

Why is $(1+2i)^{-1} = \frac{1-2i}{5}$.

Let
$$
(1+2i)^{-1} = x + yi
$$
 where $x, y \in \mathbb{R}$
\nThen $(1+2i)(x + yi) = 1 + 0i$
\n $= (x-2y) + (y+2x)i = 1 + 0i$
\n $x-2y = 1$
\n $\underbrace{y+2x=0}_{\text{Sub}\\x-\underbrace{1}{5},y=-\frac{2}{5}}$
\n $\underbrace{x=\frac{1}{5},y=-\frac{2}{5}}_{\text{multiplicative inverse}}$

Alternatively

$$
\frac{3+4i}{1+2i} \cdot \frac{1-2i}{1-2i} = \frac{(3+4i)(1-2i)}{5}
$$

$$
= 11-2i
$$

$$
= \frac{11}{5} - \frac{2}{5}i
$$

Properties of Complex Arithmetic (PCA)

Let $u, v, z \in \mathbb{C}$ with $z = x + yi$

$$
(u + v) + z = u + (v + z)
$$

\n
$$
u + v = v + u
$$

\n
$$
z + 0 = z \text{ where } 0 = 0 + 0i
$$

\n
$$
z + (-z) = 0 \text{ where } -z = -x - yi
$$

\n
$$
(uv)w = u(vw)
$$

\n
$$
z \cdot 1 = z \text{ where } 1 = 1 + 0i
$$

\n
$$
z \neq 0 \implies zz^{-1} = 1 \text{ where } z^{-1} = \frac{x - xi}{x^2 + y^2}
$$

\n
$$
z(u + v) = zu + zv
$$

Proof that multiplicative inverses are unique in $\mathbb{C}.$

Let $z \in \mathbb{C}$ where $z \neq 0$.

Suppose $u \cdot z = 1$ and $v \cdot z = 1$ for $u, v \in \mathbb{C}$.

Then $uz = vz$

Thus

$$
(uz)u = (vz)u
$$

\n
$$
\implies u(zu) = v(zu) \text{ by PCA } 5
$$

\n
$$
u = v \blacksquare
$$

10.2 Conjugate and Modulus

Warm-up

\n
$$
\frac{(1-2i)-(3+4i)}{5-6i}
$$
\n
$$
= \frac{-2-6i}{5-6i} \cdot \frac{5+6i}{5+6i}
$$
\n
$$
i^{2022} = -1 \text{ since } (i^2)^{1011}
$$
\n
$$
6x^3 + (1+3\sqrt{2}i)z^2 - (11-2\sqrt{2}i)z - 6 = 0. \text{ Let } r \in \mathbb{R}.
$$
\n
$$
6r^3 + (1+3\sqrt{2}i)r^2 - (11-2\sqrt{2}i)r - 6 = 0 + 0i
$$
\n
$$
6r^3 + r^2 - 11r - 6 = 0 \quad \text{as}
$$
\n
$$
3\sqrt{2}r^2 + 2\sqrt{2}r = 0 \quad \text{by}
$$
\n
$$
b \implies r = 0, r = -\frac{2}{3}
$$

Definition

Let $z = a + bi$ be a complex number in standard form

The complex conjugate of *z* is $\overline{z} = a - bi$

Examples

 $5 + 6i = 5 - 6i$ $\overline{5 - 6i} = 5 + 6i$ Properties of Complex Conjugate (PCJ) Let $z, w \in \mathbb{C}$. Then, 1. $\overline{\overline{z}} = z$ 2. $\overline{z+w} = \overline{z} + \overline{w}$

3. $z + \overline{z} = 2Re(z); \quad z - \overline{z} = 2Im(z)i$ 4. $\overline{zw} = \overline{z} \cdot \overline{w}$ 5. $z \neq 0 \implies \overline{z^{-1}} = \overline{z}^{-1}$

 $1 - 4$ can be proved by using standard form and showing $LHS = RHS$.

Proof of 5.

Suppose $z \in \mathbb{C}$ where $z \neq 0$.

Therefore z^{-1} exists and $zz^{-1} = 1$ by PCA.

We get $\overline{zz^{-1}} = \overline{1}$.

Thus $\overline{z}z^{-1} = 1$. That is, $\overline{z^{-1}} = \overline{z}^{-1}$

Exercise

Solve $z^2 = i\overline{z}$

Rough work

$$
(a+bi)^2 = i(a-bi)
$$

$$
a^2 - b^2 + 2abi = b + ia
$$

$$
a^2 - b^2 = b
$$

$$
2ab = a
$$

When $a = 0, b = 0, b = i$.

When
$$
a \neq 0
$$
, $b = \frac{1}{2}$, $a = \frac{\sqrt{3}}{2}$, or, $a = -\frac{\sqrt{3}}{2}$, $b = \frac{1}{2}$.

Thus there are 4 solutions.

Modulus

Let $z = x + yi \in \mathbb{C}$.

The modulus of *z* is $|x + yi| = \sqrt{x^2 + y^2}$.

Examples

$$
|5 + 6i| = \sqrt{5^2 + 6^2} = \sqrt{61}
$$

\n
$$
|5 - 6i| = \sqrt{61}
$$

\n
$$
|135| = 135
$$

\n
$$
|-135| = 135
$$

Properties of Modulus

 $|z| = 0$ iff $z = 0$ $|\overline{z}| = |z|$ $z \cdot \overline{z} = |z|^2$ $|zw| = |z||w|$ if $z \neq 0$, then $|z^{-1}| = |z|^{-1}$

Proof of the fourth statement above.

Let $z, w \in \mathbb{C}$.

Consider

$$
|zw|^{2} = (zw)(\overline{zw})
$$

$$
= zw(\overline{zw})
$$

$$
= (z\overline{z})(w\overline{w})
$$

$$
= |z|^{2}|w|^{2}
$$

$$
= (|z||w|)^{2}
$$

Since the modulus of every complex number is a non-negative real number, we get

 $|zw| = |z||w|$ ■

10.3 Complex Plane and Polar Form

Complex Plane

Imaginary axis is *y*−axis, real axis is *x*−axis.

z is the reflection of *z* in the real axis.

|*z*| is the distance from *z* to the origin $(\sqrt{x^2 + y^2})$

 $z + w$ is considered to be vector addition.

Polar Form

Standard form: 3 + 3*i* Cartesian Coordinates: (3*,* 3) Cartesian Coordinates: (3, 3)
Polar Coordinates: $(3\sqrt{2}, \frac{\pi}{4})$ Polar Form: $3\sqrt{2}cis(\frac{\pi}{4})$ \downarrow

3 $\sqrt{2}(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})) =$ Standard Form

Definition

The polar form of a complex number *z* is

$$
z = r(\cos\theta + i\sin\theta)
$$

where $r = |z|$ and θ (an argument) is an angle measured counter-clockwise from the real axis.

Note

Polar form is not unique (add multiples of 2π).

Examples

Convert to standard form $\operatorname{cis}(\frac{\pi}{2})$ $r = 1, |z| = 1$ $= i$ $2cis(\frac{3\pi}{4})$ $r = 2, |z| = 2$ = − $2, |z| = 2$
 $\sqrt{2} + \sqrt{2}i$

Convert from standard form

$$
\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}
$$
\n
$$
(r, \theta) = (1, (\sqrt{\frac{1}{\sqrt{2}}}^2 + \frac{1}{\sqrt{2}}^2))
$$
\n
$$
\theta = \frac{7\pi}{4}
$$
\n
$$
= cis(\frac{7\pi}{4})
$$

 $\sqrt{6} + \sqrt{2}i$ $r =$ $+\sqrt{8} = 2\sqrt{2}$ $r = \sqrt{6}$
 $\cos \theta = \frac{\sqrt{6}}{2}$ $\frac{\sqrt{6}}{2\sqrt{2}}, \sin \theta = \frac{\sqrt{2}}{2\sqrt{2}}$ $\frac{\sqrt{2}}{2\sqrt{2}}$ $\cos \theta = \frac{\sqrt{6}}{2\sqrt{6}}$ $rac{\sqrt{6}}{2\sqrt{2}}, \sin \theta = \frac{\sqrt{2}}{2\sqrt{2}}$ $\cos \theta = \frac{\sqrt{6}}{2\sqrt{2}}, \sin \theta = \frac{\sqrt{2}}{2\sqrt{2}}$
= $2\sqrt{2}cis(\frac{\pi}{6})$ $\overline{2}cis(\frac{\pi}{6})$

 $cis(\frac{15\pi}{6})$ in standard form. $cis(\frac{15\pi}{6}) = cis(\frac{3\pi}{6}) = \frac{\pi}{2} = 1(0+1i) = i$ Write −3 $\sqrt{2} + 3\sqrt{6}i$ in polar form.

 $r^2 = 72, r = 6\sqrt{2}.$ $\cos \theta = \frac{-3\sqrt{2}}{6\sqrt{2}}$ $\frac{-3\sqrt{2}}{6\sqrt{2}} = -\frac{1}{2}$ $\sin \theta = \frac{3\sqrt{6}}{6\sqrt{2}}$ $rac{3\sqrt{6}}{6\sqrt{2}} = \frac{\sqrt{3}}{2}$ Thus $\theta = \frac{2\pi}{3}$ 6 √ $\overline{2}cis(\frac{2\pi}{3})$ Polar Multiplication of Complex Numbers

 $z_1z_2 = r_1r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$

10.4 De Moivre's Theorem (DMT)

For all $n \in \mathbb{Z}$ and $\theta \in \mathbb{R}$

 $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

Proof of Polar Multiplication in C (PMC)

Multiply in standard form and use trig identities.

Proof of DMT

When $n \geq 0$, this is induction

When $n < 0$, we can translate to the previous case.

Using rules for $cos(-x)$ and $sin(-x)$.

DMT Examples

Write $(cis\frac{3\pi}{4})^{-100}$ in standard form.

$$
= cis\left(\frac{-300\pi}{4}\right) = cis(-75\pi)
$$

$$
= cis(\pi)
$$

$$
= -1
$$

Write (√ $\overline{3} - i$ ¹⁰ in standard form

$$
(\sqrt{3} - i)^{10} = (2cis \frac{11\pi}{6})^{10}
$$

$$
= 2^{10}cis(\frac{55\pi}{3})
$$

$$
= 2^{10}cis(\frac{1}{2} + \frac{\sqrt{3}}{2}i)
$$

$$
= 512 + 512\sqrt{3}i
$$

Note

Multiplying by *i* corresponds to rotating 90[°]

10.5 Complex *n***-th Roots Theorem (CNRT)**

*N*th Root Examples Solve $z^6 = -64$ Let $z = r \text{cis}\theta$ in polar form. In polar form, $-64 = 64 cis(\pi)$ Equating gives that

 $(rcis\theta)^6 = 64cis(\pi)$ $\implies r^6 cis 6\theta = 64 cis(\pi)$

Since $r \in \mathbb{R}$ and $r \geq 0$, we get $r = 2$. Also $\theta = \frac{\pi + 2\pi k}{6}$ where $k \in \mathbb{Z}$. We get $2cis\frac{\pi}{6}$, $2cis\frac{3\pi}{6}$, $2cis\frac{5\pi}{6}$, $2cis\frac{7\pi}{6}$, $2cis\frac{9\pi}{6}$, $2cis\frac{11\pi}{6}$ Roots of Unity Solve $z^8 = 1$ $i, \frac{-1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$ $\frac{1}{2}, -1, \frac{-1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$ $\frac{1}{2}, -i, \frac{1}{\sqrt{2}}$ $\frac{1}{2} - \frac{i}{\sqrt{2}}$ $\frac{1}{2}, 1, \frac{1}{\sqrt{2}}$ $\frac{1}{2}+\frac{i}{\sqrt{2}}$ \overline{c}

10.6 Square Roots and the Quadratic Formula

Quadratic Formula

For all $a, b, c \in \mathbb{C}, a \neq 0$, the solutions to $az^2 + bz + c = 0$ are,

$$
\frac{-b \pm w}{2a} \quad \text{where } w^2 = b^2 - 4ac
$$

11 Polynomials

11.1 Introduction

Fields

All non-zero numbers have a multiplicative inverse.

 $ab = 0$ iff $a = 0$ or $b = 0$

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ when p is prime.

11.2 Arithmetic of Polynomials

Polynomials

No negative exponents, no fractional exponents.

 $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_o$ is a polynomial over F.

when $n \geq 0 \in \mathbb{Z}, a_n, a_{n-1} \in \mathbb{F}$.

Terminology/Notation

 $iz^3 + (2+3i)z + \pi$, *z* is indeterminate.

- complex polynomial (not real)
- degree is 3
- cubic polynomial
- \bullet in $\mathbb{C}[z]$
- $f(x) = g(x)$ means corresponding coefficients are equal
- polynomial equation (if there was an equal sign). Solution to that is a root.

 $deg f(x)g(x) = deg f(x) + deg g(x)$

Division Algorithm for Polynomials

If $f(x), g(x) \in \mathbb{F}[x]$, then $\exists q(x), p(x) \in \mathbb{F}[z]$ such that $f(x) = q(x)g(x) + r(x)$ where $r(x)$ is the 0 polynomial or $deg(r(x)) < deg(g(x))$

If *r* is 0, $g(x)|f(x)$

Polynomial Arithmetic

Let $g(z) = z + (i + 1)$ and $q(z) = iz^2 + 4z - (1 - i)$. Compute $q(z)g(z)$.

Find the *q* and *r* where

 $f(z) = iz^3 + (i+3)z^2 + (5i+3)z + (2i-2)$ $g(z) = z + (i + 1)$

$$
iz^{2} + 4z + (i - 1)
$$

\n
$$
z + (1 + i) \overline{\smash{\big)}\,} iz^{3} + (i + 3)z^{2} + (5i + 3)z + (2i - 2)
$$

\n
$$
- (iz^{3} + (-1 + i)z^{2})
$$

\n
$$
4z^{2} + (5i + 3)
$$

\n
$$
- (4z^{2} + (4 + 4i)z)
$$

\n
$$
\vdots
$$

\n
$$
2i
$$

Yields
$$
q(z) = iz^2 + yz + (i - 1)
$$

 $r(z) = 2i$

Check

 $f(z) = g(z)q(z) - r(z)$

Exercise 3

Prove $(x - 1) \nmid (x^2 + 1)$

BWOC suppose $(x-1)|(x^2+1)$ in $\mathbb{R}[x]$.

Then by DP we have

$$
x^2 + 1 = (x - 1)(ax + b)
$$

for some $a, b \in \mathbb{R}$ and $a \neq 0$.

If they are equal, coefficients must be the same.

Comparing coefficients:

 $1 = a, 0 = b - a, 1 = -b$

Second and third above $\implies b - a = -2$

11.3 Roots of Complex Polynomials and the Fundamental Theorem of Algebra

Remainder Theorem (RT)

For all fields F, all polynomials $f(x) \in \mathbb{F}[x]$, and all $c \in \mathbb{F}$, the remainder polynomial when $f(x)$ is divided by $x - c$ is the constant polynomial $f(c)$.

Proof

Let $f(x) \in \mathbb{F}[x]$ where $\mathbb F$ is a field. Let $c \in \mathbb{F}$.

By DAP,

 $f(x) = r(x-c)q(x) + r(x)$ for unique $g(x), r(x) \in \mathbb{F}[x]$ where $r(x)$ is the zero polynomial or $deg(r(x)) = 0$.

Regardless, $r(x) = r_0$ for some $r_0 \in \mathbb{F}$.

$$
Also, f(x) = (c - c)q(c) + r_0 = r_0
$$

Takeaway

Finding roots corresponds to finding linear factors.

Fundamental Theorem of Algebra (FTA)

Every complex polynomial of complex degrees has a root.

Complex Polynomials of Degree *n* Have *n* Roots (CPN) Proof Discovery

Induction on *n* degrees.

Base Case

 $az + b, a \neq 0$

 $a(z - \left(-\frac{b}{a}\right))$

If $f(z)$ has degree $k+1$

By FTA, $f(z)$ has a root. Name it c_{k+1} .

Then
$$
f(z) = g(z)(z - c_{k+1})
$$

Multiplicity

The multiplicity of root *c* of a polynomial $f(x)$ is the largest possible integer *k* such that $(x - c)^k$ is a factor of $F(x)$.

Reducible and Irreducible Polynomial

Polynomial in $F[x]$ of positive degree is a reducible polynomial in $F[x]$ when it can be written as the product of 2 polynomials of positive degree.

Otherwise we say that the polynomial is irreducible in $P[x]$.

 $x^2 + 1$ is irreducible in $R[x]$

BWOC suppose $x^2 + 1$ is the product of $(ax + b)(cx + d)$ where $a, b, c, d \in \mathbb{R}$. Then compare coefficients.

Prove that $x^4 + 2x^2 + 1$ has no roots in R but is reducible.

 $x^4 + 2x^2 + 1$

 $(x^2+1)(x^2+1)$

Prove factors don't have roots to prove no roots (lots of ways to show no roots)

Write $x^2 + 1$ as a product of irreducible factors in $\mathbb{C}[x]$

$$
x^2 + 1 = (x - i)(x + i)
$$

Write $x^4 + 2x + 1$ as a product of irreducible factors

$$
x^4 + 2x^2 + 1 = (x - i)^2 (x + i)^2
$$

Factor $ix^3 + (3 - i)x^2 + (-3 - 2i)x - 6$ as a product of linear factors. Hint −1 is a root

$$
ix^{2} + (3 - 2i)x - 6
$$

\n
$$
x + 1\overline{\smash)x^{3} + (3 - i)x^{2} + (-3 - 2i)x - 6}
$$

\n
$$
- (ix^{3} + ix^{2})
$$

\n
$$
\underline{(3 - 2i)x^{2} + (-3 - 2i)x}
$$

\n
$$
- (3 - 2i)x^{2} + (3 - 2i)x
$$

\n...
\n0

The roots of this quotient are $\frac{(-3-2i)\pm w}{2i}$ where $w^2 = (3-2i)^2 + 24i$ by QF. Let $wa + bi$ where $a, b \in \mathbb{R}$ Then $a^2 - b^2 = 5$, $2ab = 12$, $a = 3$, $b = 2$ So the roots are $\frac{(-3-2i)\pm 3+2i}{2i}$. That is $(-3-2i)+3+2i$ 2*i* $=\frac{4i}{2i}$ 2*i*

and

$$
\frac{(-3-2i)-3+2i}{2i}
$$

$$
=\frac{-6}{2i}
$$

$$
=3i
$$

 $= 2$

Roots are −1*,* 2*,* 3

Hence the final answer is

$$
i(x+1)(x-2)(x-3i)
$$

Write $x^4 - 5x^3 + 16x^2 - 9x - 13$ as a product of irreducible polynomials given that $2 - 3i$ is a root.

11.4 Real Polynomials and Conjugate Roots Theorem

f(*x*), if $z \in \mathbb{C}$ and $f(z) = 0$, then $f(\overline{z}) = 0$. Depends on the fields.

By CJRT, $2 + 3i$ is also a root. Thus, $(x - (2 - 3i))(x - (2 + 3i))$ is a factor.

This quadratic factor equals, $x^2 - 4x + 13$

Now we use long division to yield, $x^2 - x - 1$

By QF, the roots of $x^2 - x - 1$ are $\frac{1 \pm \sqrt{5}}{2}$

Therefore,

$$
(x - (2 - 3i))(x - (2 + 3i))(x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2})
$$
 over C.

or

$$
x^{2} - 4x + 13(x - \frac{1 + \sqrt{5}}{2})(x + \frac{1 - \sqrt{5}}{2}) \in \mathbb{R}
$$

or

$$
(x^2 - 4x + 13)(x^2 - x - 1) \in \mathbb{Q}
$$

Real Quadratic Factors

If $f(c) = 0$ for some $c \in \mathbb{C}$ with $Im(C) \neq 0$, \exists real quadratic irreducible polynomial $g(x)$ and real polynomial $q(x)$ such that $f(x) = g(x)q(x)$

Real Factors of Real Polynomials

Every non-constant with real coefficients can be written as a product of real linear and quadratic factors.

Proof of CJRT

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$. Where $a_n, a_{n-1}, \ldots, a_0 \in \mathbb{R}$. Let $z \in \mathbb{C}$ and assume $f(z) = 0$ Now we get,

$$
f(\overline{z}) = a_n(\overline{z})^n + a_{n-1}(\overline{z})^{n-1} + \dots + a_1 \overline{z} + a_0
$$

= $a_n(\overline{z^n}) + a_{n-1}(\overline{z^{n-1}}) + \dots + a_1 \overline{z} + a_0$ by PCJ
= $\overline{a_n}(\overline{z^n}) + \overline{a_{n-1}}(\overline{z^{n-1}}) + \overline{a_1 z} + \overline{a_0}$
= $\overline{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0}$ by PCJ
= $\overline{0} = 0$