Language and Proofs in Algebra

MATH135

Jaiden Ratti Prof. J.P. Pretti 1229

Contents

1	Intr 1.1	roduction to the Language of Mathematics 3 Sets
	1.2	Mathematical Statements and Negation
	1.3	Quantifiers and Quantified Statements
	-	1.3.1 Universal and Existential Quantifiers
		1.3.2 Negating Quantifiers
	1.4	Nested Quantifiers
		•
2	Log 2.1	ical Analysis of Mathematical Statements 4 Logical Operators 4
	$\frac{2.1}{2.2}$	Implication
	2.2 2.3	Contrapositive and Converse
	$\frac{2.3}{2.4}$	If and Only If
	2.4	
3		ving Mathematical Statements
	3.1	Proving Universally Quantified Statements
	3.2	Prove Existentially Quantified Statements
	3.3	Proving Implications
	3.4	Divisibility of Integers
		3.4.1 Transitivity of Divisibility
		3.4.2 Divisibility of Integer Combinations
	3.5	Proof of Contrapositive
	3.6	Proof by Contradiction
	3.7	Proving If and Only If Statements 11
4	Mat	thematical Induction 11
	4.1	Notation for Summations, Products and Recurrences
	4.2	Proof by Induction
	4.3	Binomial Coefficients
	4.4	Principal of Strong Induction
5	Sets	s 1!
	5.1	Introduction
	5.2	Set-Builder Notation
	5.3	Set Operations
	5.4	Subsets of a Set
	5.5	Subsets, Set Equality, and Implications
c	The	e Greatest Common Divisor 17
6	6.1	e Greatest Common Divisor 17 Division Algorithm
	6.1	Greatest Common Divisor (GCD)
	6.2	Certificate of Correctness and Bézout's Lemma 19
	6.4	Extended Euclidian Algorithm
	6.5	Further Properties of the Greatest Common Divisor
	6.6	Prime Numbers
	6.7	Unique Factorization Theorem
	6.8	Prime Factorization and the Greatest Common Divisor
	0.8	
7	Line	ear Diophantine Equations 24
	7.1	The Existence of Solutions in Two Variables $\ldots \ldots \ldots$
	7.2	Finding All Solutions in Two Variables
8	Cor	agruence and Modular Arithmetic 20
	8.1	Congruence
	8.2	Elementary Properties of Congruence
	8.3	Congruence and Remainders
	8.4	Linear Congruences

	8.5	Congruence Classes and Modular Arithmetic	31
	8.6	Fermat's Little Theorem $(F\ell T)$	33
	8.7	Chinese Remainder Theorem	
	8.8	Splitting the Modulus	35
9	The	RSA Public-Key Encryption Scheme	36
10	Con	aplex Numbers	37
	10.1	Standard Form	37
	10.2	Conjugate and Modulus	39
	10.3	Complex Plane and Polar Form	41
	10.4	De Moivre's Theorem (DMT)	42
	10.5	Complex n -th Roots Theorem (CNRT)	42
	10.6	Square Roots and the Quadratic Formula	43
11			43
	11.1	Introduction	43
	11.2	Arithmetic of Polynomials	43
	11.3	Roots of Complex Polynomials and the Fundamental Theorem of Algebra	44
	11.4	Real Polynomials and Conjugate Roots Theorem	46

1 Introduction to the Language of Mathematics

1.1 Sets

Sets are not ordered.

 $\{7,\pi\} = \{\pi,7\}$

Denote element of set by $7 \in \{2, 7, 3\}$. $\{7\} \notin \{7, 3, 2\}$, but $\{7\} \in \{\{7\}, 3, 2\}$.

 $\{\}=\emptyset,\, \emptyset\neq\{\emptyset\}$

 $\emptyset \notin \{7,3\}, \, \emptyset \notin \emptyset$

 $\mathbb{Z} \to \text{set of integers.}$ $\mathbb{N} \to \text{set of natural numbers.}$ $\mathbb{Q} \to \text{set of rational numbers.}$ $\mathbb{R} \to \text{set of real numbers.}$

1.2 Mathematical Statements and Negation

Statements are true or false.

9+6=15 is a statement

x > 2 is not a statement (Open sentence. If you knew x, it would be a statement)

 $10>7~{\rm is}$ a statement

Open sentence \neq statement.

Negation

P is a statement

Negation of $P(\neg P)$ is true when P is false.

1.3 Quantifiers and Quantified Statements

1.3.1 Universal and Existential Quantifiers

 $x^2 - x \ge 0$ is an open statement.

 $\forall x \in \mathbb{N}, x^2 - x \ge 0$. This is "for all natural numbers $x, x^2 - x \ge 0$ " We know this is true.

Changing the domain makes it false.

 $\forall x \in \mathbb{R}, x^2 - x \ge 0$

When domain is empty $(\forall x \in \emptyset) P(x)$ is always true.

 $\forall x \in \emptyset, x^2 - x \geq 0$ is true. All elephants in the room have 20 legs $\ddot{\smile}$

Let $x \in \mathbb{R} \leftarrow$ universally quantifying the following statement.

Existential Quantifier

 $\exists x \in S, P(x)$. This is "there exists a number x in the set S such that P(x) is true." There just has to be one such case.

$$\exists m \in \mathbb{Z}, \frac{m-7}{2m+4} = 5, m = -3. \therefore true.$$

Once again, domain matters.

 $\exists x \in \emptyset, P(x) \text{ is always false.}$

Exercises

$$64 \text{ is a perfect square } \iff \exists x \in \mathbb{Z}, x^2 = 64$$
$$y = x^3 - 2x + 1 \text{ has no } x \text{-ints } \iff \forall x \in \mathbb{R}, x^3 - 2x + 1 \neq 0$$
$$\iff \neg (\exists x \in \mathbb{R}, x^3 - 2x + 1 = 0)$$
$$2^{2a-4} = 8 \text{ has a rational solution } \iff \exists a \in \mathbb{Q}, 2a - 4 = 3$$
$$\frac{n^2 + n - 6}{n + 3} \text{ is an integer as long as } n \text{ is an integer } \iff \forall n \in \mathbb{Z}, \frac{n^2 + n - 6}{n + 3} \in \mathbb{Z}$$

1.3.2 Negating Quantifiers

Everybody in this room was born before $2010 \leftarrow \text{Universal}$

Somebody in this room was born after 2010, or on $2010 \leftarrow \text{Existential}$

 $\forall x \in S, P(x)$ is false when there is at least one $x \in S$ for which P(x) is false.

$$\neg(\forall x \in S, P(x)) \equiv \exists x \in S, (\neg P(x)) \neg(\exists x \in S, P(x)) \equiv \forall x \in S, (\neg P(x))$$

We cannot just change all the signs since P(x) might be complicated.

 $\forall x \in \mathbb{R}, |x| < S.$ Negation: $\exists x \in \mathbb{R}, |x| \ge S$

Someone in this room was born before 1990. Everyone in this room was born after or during 1990 is the negation.

 $\exists x \in \mathbb{Q}, x^2 = S.$ Negation: $\forall x \in \mathbb{Q}, x^2 \neq S.$

1.4 Nested Quantifiers

 $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1$ is false for every x and every y.

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$ is true. \exists is in the open statement

 $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$ is true.

 $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1$ is false. If x was fixed, there is no way every y will work.

2 Logical Analysis of Mathematical Statements

2.1 Logical Operators

Statement represented by A.

A	$\neg A$
T	F
F	T

Conjunction and Disjunction

A and $B\equiv A\wedge B$ is

A	B	$A \wedge B$
T	T	Т
T	F	F
F	T	F
F	F	F

 $\sqrt{2}$ is irrational and 3 > 2 is true.

10 is even and 1 = 2 is true.

 $\begin{aligned} &\forall x \in \mathbb{N}, (x > x - 1) \land (2x > x) \text{ is true.} \\ &\forall x \in \mathbb{Z}, (x > x - 1) \land (2x > x) \text{ is false.} \\ &A \text{ or } B \equiv A \lor B \text{ is} \end{aligned}$

A	B	$A \lor B$
T	T	Т
T	F	Т
F	Т	Т
F	F	F

 $5 \leq 6$ is true.

87 is a prime number of 14x = 25 has $x \in \mathbb{Z}$ is false. 16 is a perfect square or 15 is a multiple of 3 is true. Logical Equivalence $A \equiv \neg(\neg A)$. A is logically equivalent to not not A.

De Morgan's Laws

$$\neg (A \lor B) \equiv (\neg A) \land (\neg B)$$
$$\neg (A \land B) \equiv (\neg A) \lor (\neg B)$$

A	B	$A \lor B$	$\neg(A \lor B)$	$\neg A$	$\neg B$	$(\neg A) \land (\neg B)$
T	T	Т	F	F	F	F
T	F	Т	F	F	Т	F
F	T	Т	F	Т	F	F
F	F	F	T	T	Т	T

Example, show

$$\neg (A \land (\neg B \land C)) \equiv \neg (A \land C) \lor B$$
$$\neg (A \land (\neg B \land C))$$
$$\equiv (\neg A) \lor \neg (\neg B \land C)$$
$$\equiv (\neg A) \lor (B \lor \neg C)$$
$$\equiv (\neg A) \lor (\neg C \lor B)$$
$$\equiv (\neg A \lor \neg C) \lor B$$
$$\equiv \neg (A \land C) \lor B$$

2.2 Implication

"If H then C", $H \implies C$ Equivalent to $(\neg H) \lor C$ H = hypothesis, C is conclusion

H	C	$H \implies C$
T	T	Т
T	F	F
F	T	Т
F	F	Т

 $\sqrt{2}$ is irrational, $3^3 = 27 \leftarrow$ True.

$$\begin{split} \sqrt{2} \text{ is irrational, } 3^3 &= 28 \leftarrow \text{False.} \\ \sqrt{2} \text{ is rational, } 3+4 &= 6 \leftarrow \text{True.} \\ \sqrt{2} \text{ is rational, } 3+4 &= 7 \leftarrow \text{True.} \\ \text{For all real numbers } x, \text{ if } x &> 2, x^2 > 4 \leftarrow \text{True.} \\ \text{For all real numbers } x, \text{ if } x &\geq 2, x^2 > 4 \leftarrow \text{True.} \\ \forall k \in \mathbb{Z}, \text{ if } k > 3, \text{ then } 2k+1 \geq 9 \text{ is true.} \\ \forall k \in \mathbb{Z}, \text{ if } k > 3, \text{ then } 2k+1 \geq 10 \text{ is false.} \\ \forall k \in \mathbb{Z}, \text{ if } k > 3, \text{ then } 2k+1 \geq 8 \text{ is true.} \\ \forall x \in \mathbb{R} (x \geq 7 \implies x+\frac{1}{x} \geq 2) \\ \text{For all } x \in \mathbb{R}, \text{ if } x \geq 7, \text{ then } x+\frac{1}{x} \geq 2 \\ x \in \mathbb{R} \land x \geq y \implies x+\frac{1}{x} \geq 2 \\ x+\frac{1}{x} \geq 2 \text{ whenever } x \in \mathbb{R} \text{ and } x \geq 7 \\ \hline \text{Negation of Implication} \\ \neg (H \implies C) \equiv \neg ((\neg H) \lor C) \equiv (\neg (\neg H)) \land (\neg C)) \equiv H \land (\neg C) \end{split}$$

Negation of implication is not an implication.

If 7 is a prime and $5 \le 6$, then 24 is a perfect square (false).

7 is prime and $5 \le 6$ and 24 is not a perfect square (true).

Negation of implication is and. Hypothesis is not always first.

Implication Examples

For all $a, b, x, \in \mathbb{R}$

- 1. If a < b, then $a \le b$ (true)
- 2. If |x| = 3, then $x^2 = 9$ (true)

2.3 Contrapositive and Converse

Contrapositive

The contrapositive of $A \implies B$ is the implication $\neg B \implies \neg A$

- 1. If a > b, then $a \ge b$ (true)
- 2. If $x^2 \neq 9$, then $|x| \neq 3$ (true)

Logically equivalent with $A \implies B$

Converse

The converse of $A \implies B$ is the implication $B \implies A$

- 1. If $a \leq b$, then a < b (false)
- 2. If $x^2 = 9$, then |x| = 3 (true)

Not logically equivalent with $A \implies B$

A	B	$A \iff B$
T	T	Т
T	F	F
F	T	F
F	F	Т

2.4 If and Only If

Logical operator \iff For all $x \in \mathbb{R}$, |x| = 3 iff $x^2 = 9$ True both ways. 2+2=5 iff 3+3=7 is True

3 Proving Mathematical Statements

Prove:

$$x^4 + x^2y + y^2 \ge 5x^2y - 5y^2$$

Let $x, y \in \mathbb{R}$

$$0 \le (x^2 - 2y)^2$$

= $x^4 - 4x^2y + 4y^2$
= $x^4 - 5x^2y + x^2y + 5y^2 + y^2$

Faulty logic: Prove 7 = -7 by squaring both sides

3.1 Proving Universally Quantified Statements

Proving $\forall x \in S, P(x)$

We can consider arbitrary $x \in S$, and argue that P(x) must be true (direct proof).

Prove an identity

Prove

 $\begin{array}{l} max\{x,y\} = \frac{x+y+|x-y|}{2} \text{ for all } x,y \in \mathbb{R} \\ \underline{\text{Case 1}} \colon x \geq y. \text{ In this case } max\{x,y\} = x. \text{ And } \frac{x+y+x-y}{2} = x \\ \underline{\text{Case 2}} \colon x < y. \text{ In this case } max\{x,y\} = y. \text{ And } \frac{x+y+(-x+y)}{2} = y \\ \text{ In both cases, LHS} = \text{RHS} \blacksquare \end{array}$

Disprove Universally Quantified Statement

 $\forall x \in \mathbb{R}, (x^2 - 1)^2 \ge 0$

A counter example is $1 \in \mathbb{R}$.

Single example doesn't prove $\forall x \in S, P(x)$ is true.

Single counter example does prove $\forall x \in S, P(x)$ is false.

3.2 Prove Existentially Quantified Statements

There exists a perfect square k such that $k^2 - \frac{31}{2}k = 8$.

Consider k = 16. Since $k = 4^2$, k is a perfect square. Also $k^2 - \frac{31}{2}k = 256 - 248 = 8$ completing the proof.

Disprove Existential Statement

We will prove the negation is true.

"There exists a real number x such that $\cos 2x + \sin 2x = 3$ "

"For all real numbers x such that $\cos 2x + \sin 2x \neq 3$ "

 $x \in \mathbb{R}$

Since $\cos 2x$, $\sin 2x \le 1$, then

 $\cos 2x + \sin 2x \le 2\blacksquare$

For all $k \in \mathbb{N}$, there exists $x \in \mathbb{R}$, such that $\log_k x^5 = \frac{1}{2}$

Proof

Let $k \in \mathbb{N}$. Consider $x = k^{\frac{1}{10}}$. Clearly $x \in \mathbb{R}$. Moreover, $\log_k x^5 = \log_k (k^{\frac{1}{10}})^5 = \log_k k^{\frac{1}{2}} = \frac{1}{2}$

3.3 Proving Implications

If m is an even integer, then $7m^2 + 4$ is an even integer.

Proof

Assume m is an even integer.

That is m = 2k for some integer $k \in \mathbb{Z}$

We must show $\exists \ell \in \mathbb{Z}, 7m^2 + 4 = 2\ell$

We have $7m^2 + 4 = 7(2k)^2 + 4 = 2(14k^2 + 2)$

Since $k \in \mathbb{Z}$, then $14k^2 + 2 \in \mathbb{Z}$. That is, picking $\ell = 14k^2 + 2$ completes the proof.

For all integers k, if k^5 is a perfect square, then $9k^19$ is a perfect square

```
Let k \in \mathbb{Z}
Assume k^2 is a prefect square
That is k^5 = n^2 for some n \in \mathbb{Z}
then 9k^{19} = (9k^{14})k^5
= (9k^{14})n^2
= (3k^7)^2n^2
= (3k^7n)^2
```

Since $k, n \in \mathbb{Z}$, then $3k^7n \in \mathbb{Z}$. Thus $9k^{19}$ is a perfect square.

3.4 Divisibility of Integers

An integer m divides an integer n if there exists an integer k so that n = km.

We write m|n is m divides n

7|56,7|-56,7|0,0|0

 $7 \nmid 55, 0 \nmid 7$

 $\frac{7}{56}$ is a number, 7|56 is a statement.

3.4.1 Transitivity of Divisibility

For all $a, b, c \in \mathbb{Z}$ if a|b and b|c then a|c.

Proof

Let $a, b, c \in \mathbb{Z}$. Assume a|b and b|c then b = ak and $c = b\ell$ for some $k, \ell \in \mathbb{Z}$.

Substituting gives $c = (ak)\ell = (k\ell)a$

Notice that $k\ell \in \mathbb{Z}$ because $k, \ell \in \mathbb{Z}$. Thus a|c by the definition of divisibility.

3.4.2 Divisibility of Integer Combinations

For all a, b, c if a|b and a|c then a|(bx + cy) for all integers x, y.

e.g. a = 5, b = 10, c = 25

DIC $\rightarrow 5 | (10x + 25y)$ for all $x, y \in \mathbb{Z}$

$\underline{\text{Proof}}$

Let $a, b, c \in \mathbb{Z}$. Assume a|b and a|c. Then ak = b and $a\ell = c$ for some $k, \ell \in \mathbb{Z}$. Now $bk + cy = akx + a\ell y = a(kx + \ell y)$

Since $k, x, \ell, y \in \mathbb{Z}$, then $kx + \ell y \in \mathbb{Z}$.

Proposition

For all $a, b, c \in \mathbb{Z}$ if a|b or a|c, then a|bc

Note

Let P, Q, and R be statement variables

$$(P \lor Q) \implies R \equiv (P \implies R) \land (Q \implies R)$$

Proof

Let $a, b, c \in \mathbb{Z}$ First we prove $a|b \implies a|bc$ So suppose b = ak for some $k \in \mathbb{Z}$ Then bc = (ak)c = a(kc)Since $k, c \in \mathbb{Z}$, then $kc \in \mathbb{Z}$. Hence a|bcTo complete this proof, we must show $a|c \implies a|bc$. The argument in this case is similar \blacksquare . Another Example For all $a, b, c \in \mathbb{Z}$ if for all $x \in \mathbb{Z}, a | (bx + c)$ then a | (b + c)Proof Let $a, b, c \in \mathbb{Z}$ Assume $\forall x \in \mathbb{Z}, a | (bx + c)$ Choosing x = 1, gives a|(b+c)This is not choosing a number for all integers x. We are assuming the hypothesis is correct. For all $a, b, c, x \in \mathbb{Z}$ if a|(bx + c), then a|(b + c)This is false. Counter example $3|(2(3)+3) \text{ and } 3 \nmid (2+3)$ TD: $\forall a, b, c \in \mathbb{Z}, (a|b \wedge b|c) \implies a|c$ 11|55 and 55|n, we know 11|n, by TD.

3.5 **Proof of Contrapositive**

Example

For all integers x, if $x^2 + 4x - 2$ is odd, then x is odd.

Proof

Let $x \in \mathbb{Z}$. We will show the contrapositive is true.

Assume x is even. That is x = 2k for some integer k. Substitute to get

 $x^{2} + 4x - 2 = 4k^{2} + 8k - 2 = 2(2k^{2} + 4k - 1)$

Since k is an integer, then $2k^2 + 4k - 1 \in \mathbb{Z}$. That is $x^2 + 4x - 2$ is even \blacksquare .

Example

If $a, b \in \mathbb{R}$. If ab is irrational then a is irrational or b is irrational.

<u>Proof</u>

Let $a, b \in \mathbb{R}$. We will use the contrapositive.

Assume $a = \frac{p}{q}$ and $b = \frac{r}{s}$ for some integers $p, q, r, s \in \mathbb{Z}$ where $q, s \neq 0$.

Then $ab = \frac{rp}{qs}$ moreover since $p, q, r, s \in \mathbb{Z}$ then $rp, qs \in \mathbb{Z}$. Also $qs \neq 0$. That is ab is rational.

Example

Let $x \in \mathbb{R}$. If $x^3 + 7x^2 < 9$, then x < 1.1.

Proof

Let $x \in \mathbb{R}$. Suppose $x \ge 1.1$ then $x^3 + 7x^2 \ge (1.1)^3 + 7(1.1)^2 > 9.8 > 9$.

We get that $x^3 + 7x^2 \ge 9$. Therefore the contrapositive is true, proving the original statement is true as well.

Example

Let $a, b, c \in \mathbb{Z}$

If a|b then $b \nmid c$ or a|c.

Proof

Let $a, b, c \in \mathbb{Z}$.

Using "elimination", assume a|b and b|c. By TD a|c.

Why does this work?

$$(A \implies (B \lor C)) \equiv A \land \neg B \implies C$$

3.6 **Proof by Contradiction**

A or $\neg A$ must always be false.

 $A \wedge (\neg A)$ is always false, calling it true is a contradiction.

We can prove that statement P is true by, assuming $\neg P$ is true then based on this assumption, prove that both Q and $\neg Q$ are true for some statement P.

Prove that $\neg(\exists a, b \in \mathbb{Z}, 10a + 15b = 12)$

By way of contradiction (BWOC), assume that 10a + 15b = 12 for some $a, b \in \mathbb{Z}$. Then 5(2a + 3b) = 12. Since $2a + 3b \in \mathbb{Z}$, then 5|12. However we know that $5 \nmid 12$. This is a contradiction, completing the proof.

Prove $\sqrt{2}$ is irrational.

Assume it is rational, $\sqrt{2} \in \mathbb{Q}$.

 $\sqrt{2} = \frac{a}{b}$ where a, b are integers > 0.

Assume they are <u>not</u> even. If they were even, a = 2c and b = 2d and thus c < a and d < b.

 $\frac{a}{b} = \frac{2c}{2d} = \frac{c}{d}$ $\frac{a}{b} = \sqrt{2}$

$$a^2 = 2b^2$$

 $2|a^2$, so a^2 is even.

Assume its odd

 $a^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1$. a must be even.

 \exists an integer *m* such that a = 2m,

 $b^2 = 2m^2$. b must be even then which is a contradiction.

 $\therefore \sqrt{2}$ is irrational.

 $\neg(A \implies B) \equiv (A \land (\neg B))$

Proving $A \implies B$ is true by contradiction, we assume $A \implies B$ is false. A is true, B is false. If we can prove this is a contradiction, $A \implies B$ is true.

 $\forall a, b, c \in \mathbb{Z} \text{ if } a | (b + c) \text{ and } a \nmid b, \text{ then } a \nmid c.$

For sake of contradiction, there exists integers a, b, c such that a|(b+c) and $a \nmid b$ and a|c.

By DIC we have a|[(1)(b+c) + (-1)c] = a|b contradiction.

3.7 Proving If and Only If Statements

Example

Let $x, y \in \mathbb{R}$ where $x, y \geq 0$. Then x = y iff $\frac{x+y}{2} = \sqrt{xy}$

<u>Proof</u>

Let $x, y \in \mathbb{R}$ where $x, y \ge 0$.

We will prove this in both directions (\rightarrow)

Assume $x = y, \frac{y+y}{2} \rightarrow y \leftarrow \sqrt{yy}$. (\leftarrow) Assume $\frac{x+y}{2} = \sqrt{xy}$ $\implies x + y = 2\sqrt{xy}$ $\implies (x + y)^2 = 4xy$ $\implies x^2 - 2xy + y^2 = 0$ $\implies (x - y)^2 = 0$ $\implies x - y = 0$ $\implies x = y$

4 Mathematical Induction

4.1 Notation for Summations, Products and Recurrences

Summation Notation

$$\sum_{k=3}^{7} k^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2 = 135$$

Product Notation

$$\prod_{k=1}^{3} (5-k)! = 4! \cdot 3! \cdot 2! = 288$$

4.2**Proof by Induction**

Statement

$$\sum_{i=1}^{n} i(i+1) = \frac{1}{3}n(n+1)(n+2) \quad \forall n \in \mathbb{N}$$

 $\underline{\mathrm{Proof}}$

We will proceed by induction on n.

Base Case

We consider when n = 1

Then

$$\sum_{i=1}^{n} i(i+1) = \sum_{i=1}^{1} i(i+1) = 1(1+1) = 2$$

And

$$\frac{1}{3}n(n+1)(n+2) = \frac{1}{3}(1)(2)(3) = 2$$

That is, the statement is true when n = 1.

Inductive Step

Let k be an arbitrary natural number.

Assume

$$\sum_{i=1}^{k} i(i+1) = \frac{1}{3}k(k+1)(k+2)$$

Consider when $n = k+1$

٦

Then

$$\frac{1}{3}n(n+1)(n+2) = \frac{1}{3}(k+1)(k+2)(k+3)$$

And

$$\sum_{i=1}^{n} i(i+1) = \sum_{i=1}^{k+1} i(i+1)$$

= $(\sum_{i=1}^{k} i(i+1)) + (\sum_{i=k+1}^{k+1} i(i+1))$
= $\frac{1}{3}k(k+1)(k+2) + (k+1)(k+2)$ by our inductive hypothesis
= $\frac{1}{3}k(k+1)(k+2) + \frac{3}{3}(k+1)(k+2)$
= $\frac{1}{3}(k+1)(k+2)(k+3)$

That is, the statement is true when n = k + 1. Therefore by POMI, the proof is complete. <u>POMI</u>

Let P(n) be a statement that depends on $n \in \mathbb{N}$. If statement 1 and 2 are true

- 1. P(1)
- 2. For all $k \in \mathbb{N}$, if P(k), then P(k+1)

Then statement 3 is true.

3. For all $n \in \mathbb{N}, P(n)$ $P(1) \implies P(2) \implies P(3) \implies P(4)$ POMI doesn't have to start at 1. Let P(n) be the open sentence $6|(2n^3 + 2n^2 + n)|$ Prove P(n) is true for all n. Base Case $P(1), 6|6\checkmark$ Assume P(k) is true $6|(2k^3 + 3k^2 + k)|$ Inductive Step $6|(2(k+1)^3 + 3(k+1)^2 + (k+1))|$ $2(k^3 + 3k^2 + 3k + 1) + 3(k^2 + 2k + 1) + (k + 1)$ $\underbrace{\frac{2k^3+3k^2+k}{6 \text{ divides this}}}_{6 \text{ divides this}} + \underbrace{\frac{6k^2+6k+6k+6}{6 \text{ divides this}}}_{6 \text{ divides this}}$ 6 divides the sum by DIC.

4.3**Binomial Coefficients**

 $\binom{5}{2} \implies 5C2 \implies "5 \text{ choose } 2" = \frac{5!}{3! \cdot 2!} = 10$ $\binom{n}{m} = \frac{n!}{(n-m)!m!}$ $\binom{n}{m} = 0$ when m > n. Pascals Identity

$$\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m} \quad \text{for all positive integers } n, m \text{ with } m < n.$$

Binomial Theorem

 $(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4$ BT1

$$(1+x)^n = \sum_{m=0}^n \binom{n}{m} x^m$$

BT2

$$(a+b)^n = \sum_{m=0}^n \binom{n}{m} a^{n-m} b^m$$

Practice

Prove that for all integers $n \ge 0$, $\sum_{k=0}^{n} {n \choose k} = 2^{n}$ Let x = 1 in BT1 $(1+1)^n = \sum_{k=0}^n \binom{n}{0} (1)^0$

What is the coefficient of x^{18} in $(x^2 - 2x)^{12}$

By BT2

$$(x^{2} - 2x)^{12} = \sum_{m=0}^{12} {\binom{12}{m}} (x^{7})^{12-m} (-2x)^{m}$$
$$= \sum_{m=0}^{12} {\binom{12}{m}} (-2)^{m} x^{24-m}$$
Choosing $m = 6$ gives the coefficient of ${\binom{12}{6}} (-2)^{6}$
$$= 59136$$

Example

Define $x_1 = 4, x_2 = 68$ and $x_m = 2x_{m-1} + 15x_{m-2}$ for $m \ge 3$

Prove that $x_n = 2(-3)^n + 10 \cdot 5^{n-1}$ for all $n \in \mathbb{N}$.

Proof by Induction on n.

Base Case: True when n = 1, n = 2

Inductive Step:

Let k be an arbitrary natural number where $k \geq 2$.

Let P(n) be the open sentence.

Assume $P(1), P(2), P(3), \ldots, P(k)$ are all true. Then what happens to k + 1?

Consider n = k + 1

Then

$$\begin{aligned} x_n &= x_{k+1} = 2x_k + 15x_{k-1} \\ &= 2[2(-3)^k + 10 \cdot 5^{k-1}] + 15[2(-3)^{k-1} + 10 \cdot 5^{k-2}] \\ &= 4(-3)^4 + 30(-3)^{k-1} + 20 \cdot 5^{k-1} + 150 \cdot 5^{k-2} \\ &= 4(-3)^k - 10(-3)^k + 4 \cdot 5^k + 6 \cdot 5^k \\ &= -6(-3)^k + 10 \cdot 5^k \\ &= 2(-3)^{k+1} + 10 \cdot 5^k \end{aligned}$$

Hence the proof is done by POSI. Difference between POMI and POSI is not base cases.

4.4 Principal of Strong Induction

Let P(n) be a statement that depends on $n \in \mathbb{N}$. If

1. P(1) is true, and

2. $\forall k \in \mathbb{N}, [(P(1) \land P(2) \land \ldots \land P(k)) \implies P(k+1)]$

Example

Prove that nm - 1 breaks are needed to break an $n \times m$ chocolate bar into individual pieces. Proof

N = nm. We will proceed by induction on N.

Base Case

When N = 1, no breaks are needed.

Since N - 1 = 0, the statement is true for N = 1.

Inductive Step

Let $k \in \mathbb{N}$.

Suppose the statement is true when N = 1, N = 2, N = 3, ..., N = k.

Consider N = k + 1 and the first break. We are left with 2 smaller bars. Let x and y be the number of pieces in these smaller bars.

Then $1 \le x, y \le k$. Also x + y = N. Breaking these two bars requires (x - 1) + (y - 1) = N - 2 breaks by our IH.

For the original bar, we require

1 + N - 2 = N - 1 breaks. By POSI this completes the proof.

5 Sets

5.1 Introduction

The number of elements in a set is cardinality. Denoted by |S|.

$$S = \{1, 2, 4, 6\} . |S| = 4$$

 $|\emptyset| = 0$ but $|\{\emptyset\}| = 1$

 $\emptyset = \{\}$ empty set but ...

 $\{\emptyset\}$ is not an empty set

5.2 Set-Builder Notation

Universal set \mathcal{U} contains the objects we are concerned with (universe of discourse \rightarrow universal set). Notation:

 $\{x \in \mathcal{U} : P(x)\} =$ "The set of all x in \mathcal{U} such that P(x) is true". $Q = \{ x \in \mathbb{R} : x = \frac{a}{b} \text{ for some } a, b \in \mathbb{Z}, b \neq 0 \}$ Set of positive factors of 12 $\{x \in \mathbb{N} : n | 12\}$ Set of even integers $\{x \in \mathbb{Z} : x = 2k, k \in \mathbb{Z}\}$ Set-Builder Notation Type 2 $\{f(x): x \in \mathcal{U}\}$ "all objects in \mathcal{U} of the form f(x)" Even set of integers $\{2k : k \in \mathbb{Z}\}$ Perfect squares $\{x^2 : x \in \mathbb{R}\}$ Multiples of 12 $\{12n : n \in \mathbb{Z}\}$ Set-Builder Notation Type 3 $\{f(x): x \in \mathcal{U}, P(x)\}$ or $\{f(x): P(x), x \in \mathcal{U}\}$ Set consisting of all objects of the form f(x) such that x is an element of \mathcal{U} and P(x) is true. $Q = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$ Integer powers of $2: \{2^k : k \in \mathbb{Z}, k \ge 0\}$ Perfect squares larger than $50: \{x^2: x^2 > 50, x \in \mathbb{Z}\}$ Multiples of $7: \{7x : x \in \mathbb{Z}\}$ Odd perfect squares: $\{x^2 : x^2 = 2k + 1, k \in \mathbb{Z}\}$

5.3 Set Operations

Union of 2 sets $S \And T, S \cup T$ is the set of all elements in either

$$S \cup T = \{x : (x \in S) \lor (x \in T)\}$$

e.g. $\{2k: k \in \mathbb{Z}\} \cup \{k \in \mathbb{Z}: 0 \le k \le 10\} = \{0, 1, 2, 3, 4, \dots, 10, 12, 14, \dots\}$

Intersection of 2 sets $S\ \&\ T,S\cap T$ is the set of elements in both

$$S \cap T = \{x : (x \in S) \land (x \in T)\}$$

Set Difference of 2 sets S & T, S - T or $S \setminus T$ is the set of all elements in S but not in T.

$$S \setminus T = \{x : (x \in S) \lor (x \notin T)\}$$

The complement of a set S, \overline{S} or S^{\complement} is the set of elements in the universal set but not in S.

$$\overline{S} = \mathcal{U} - S = \{x \in \mathcal{U} : x \notin S\}$$

(When $\mathcal{U} = \mathbb{Z}$) Let $S = \{x \in \mathbb{Z} : x \ge 0\}, \overline{S} = \{x \in \mathbb{Z} : x < 0\}$

5.4 Subsets of a Set

Two sets are disjoint when $S \cap T = \emptyset$.

Any set S and its complement \overline{S} are disjoint.

Any set S and \emptyset are disjoint.

A set S is a subset of set T if every element of S is an element of T. Denoted by: $S \subseteq T$. If S is not a subset of T, that is denoted by $S \notin T$.

$$\begin{split} & \{2k: k \in \mathbb{Z}\} \subseteq \mathbb{Z} \\ & \{2, 5, 6, 8, 10\} \nsubseteq \{2k: k \in \mathbb{Z}\} \\ & \emptyset \subseteq S \text{ and } S \subseteq S \\ & \mathbb{N} \subseteq \mathbb{Z}, \mathbb{Z} \subseteq \mathbb{Q}, \mathbb{Q} \subseteq \mathbb{R} \end{split}$$

A set S is a proper set of T if there is at least one element of T that is not in S. (S must be a subset). $S \subsetneq T$.

$$A = \{2k : k \in \mathbb{Z}\}, B = \{2k + 1 : k \in \mathbb{Z}\}, C = A \cup B$$
$$A \subsetneq \mathbb{Z}, B \subsetneq \mathbb{Z}$$
$$C \subset \mathbb{Z} \text{ (not a proper subset since } C = \mathbb{Z}\text{)}$$
$$\{1, 2, 3\} \subset \{1, 2, 3, 4\} \text{ and } \{1, 2, 3\} \subsetneq \{1, 2, 3, 4\}$$
All proper subsets are subsets

If $A \subset B \land B \subset A$, then B = A.

5.5 Subsets, Set Equality, and Implications

Given S and T, prove $S \subseteq T$

Prove the implication $\forall x \in \mathcal{U}, (x \in S) \implies (x \in T)$

Example: Let $S = \{8m : m \in \mathbb{Z}\}$ and $T = \{2n : n \in \mathbb{Z}\}$. Show that $S \subseteq T$.

Proof: Let $x \in \mathbb{Z}$ and assume $x \in S$. Then 8m for $m \in \mathbb{Z}$. Then x = 2(4m). $4m \in \mathbb{Z}$, set n = 4m and we can see x = 2n. Thus $x \in T$, $S \subseteq T$.

Let $A = \{n \in \mathbb{N} : 4 | (n-3)\}$ and $B = \{2k+1 : k \in \mathbb{Z}\}$. Prove $A \subseteq B$.

Let $x \in \mathbb{N}$ since $x \in A$. Then 4|(x-3), such that $j \in \mathbb{Z}$

$$4j = x - 3$$

$$x = 4j + 3$$

$$= 4j + 2 + 1$$

$$= 2\underbrace{(2j + 1)}_{\mathbb{Z}} + 1$$

since $j \in \mathbb{Z}, 2j + 1 \in \mathbb{Z}, k = 2j + 1, x = 2k + 1, x \in B$ Given S & T, prove S = T. Prove $S \subseteq T$ and $T \subseteq S$. Show $\forall x \in \mathcal{U}, (x \in S) \implies (x \in T) \land (x \in T) \implies (x \in S) \text{ or } (x \in S) \iff (x \in T)$ Let $S = \{1, -1, 0\}$ and $T = \{x \in \mathbb{R} : x^3 = x\}$. Prove S = T \subseteq Let $x \in S$. Then x = 1, -1, 0. When $x = 1, (1)^3 = 1 \dots$ So $x \in S \implies x \in T$ \supseteq Let $x \in T$. Then $x^3 = x$ or $x^3 - x = 0, x(x-1)(x+1) = 0$. x must be $0, -1, \text{ or } 1 \dots x \in S$. $T \subseteq S$. Since we have shown both $S \subseteq T$ and $S \supseteq T, S = T$. **Proving General Statements** Prove $A \cap B \subseteq A$ Proof: Let $x \in A \cap B$, then $x \in A$ and $x \in B$. Thus $x \in A \cap B \implies x \in A$ so $A \cap B \subseteq A$. Prove that S = T if and only if $S \cap T = S \cup T$ (\rightarrow) Assume S = T. Then $S \subset T$ and $T \subset S$. \subseteq Let $x \in S \cap T$. Then $x \in S$ and $x \in T$ so $x \in S \cup T$ \supseteq Let $x \in S \cup T$. Then $x \in S$ or $x \in T$. If $x \in S$, since $S \subseteq T$, then $x \in T$ and vice versa. Thus $x \in S \cup T, x \in S \cap T$. (\leftarrow) Assume $S \cap T = S \cup T$ \subseteq Let $x \in S$. Then $x \in S \cup T \implies x \in S \cap T$ so $x \in T$. \supseteq Let $x \in T$. Then $x \in S \cup T \implies x \in S \cap T$ so $x \in S$. We have shown it both ways so $S \subseteq T$ and $T \subseteq S, S = T$.

6 The Greatest Common Divisor

Bounds by Divisibility For all $a, b \in \mathbb{Z}$, if b|a and $a \neq 0$, then $b \leq |a|$ Proof Let $a, b \in \mathbb{Z}$ Assume b|a and $a \neq 0$ Then there exists $q \in \mathbb{Z}$ such that bq = a. From this we get |bq| = |a|This tells us |b||q| = |a|Since $a \neq 0$ m then $q \neq 0$. Since $q \in \mathbb{Z}, q \neq 0$, then $|q| \geq 1$ Sub into equation to get $|b| \leq |a|$ 1229

Since $b \leq |b|$, so $b \leq |a|$.

6.1 Division Algorithm

For all $a \in \mathbb{Z}$ and for all $b \in \mathbb{N}$ there exists unique integers q and r such that

$$a = bq + r$$
 where $0 \le r < b$

Examples

$$a = 50, b = 8 \quad 50 = 8 \cdot \underbrace{6}_{q} + \underbrace{2}_{r}$$
$$a = 40, b = 8 \quad 40 = 8 \cdot 5 + 0$$
$$a = -50, b = 8 \quad -50 = 8 \cdot (-7) + 6$$

6.2 Greatest Common Divisor (GCD)

```
Divisors of 84: \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 7, \pm 12, \pm 14, \pm 21, \pm 28, \pm 42, \pm 84
```

Divisors of $60: \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 10, \pm 12, \pm 15, \pm 20, \pm 30, \pm 60$

gcd(84, 60) = 12

Formal Definition

 $Leta, b \in \mathbb{Z}$

When a and b are not both zero, we say an integer d > 0 is the greatest common divisor of a and b, and write gcd(a, b) iff

- $d|a \wedge d|b$
- for all integers c, if c|a and c|b then $c \leq d$

Otherwise, we say gcd(0,0) = 0

Examples

- gcd(84, 60) = 12
- gcd(-84, 60) = 12
- gcd(84, -60) = 12
- gcd(-84, -60) = 12
- gcd(84,0) = 84
- gcd(-84,0) = 84

<u>Fact</u>

For all $a, b \in \mathbb{Z}$, gcd(3a + b, a) = gcd(a, b)

Proof

Let $a, b \in \mathbb{Z}$. Let d = gcd(a, b)

 $\underline{\text{Case 1}} \ a = b = 0$

In this case, by definition, d = 0

Also 3a + b = 0 and a = 0 in this case, thus gcd(3a + b, a) = 0 as well.

<u>Case 2</u> $a \neq 0$ or $b \neq 0$

Note that $3a + b \neq 0$ or $a \neq 0$ in this case as well. Since d = gcd(a, b), we know d > 0 and d|a. We get d|(3a + b) by DIC since we also know d|b.

To complete the proof we let $c \in \mathbb{Z}$ and assume c|(3a+b) and c|a

1229

All we must show is $c \leq d$. Using DIC again we get c|[(3a+b)(1) + a(-3)]|c|bHence by definition of $gcd(a, b)c \leq d$. GCD with Remainders (GCD w R) For all $a, b, q, r \in \mathbb{Z}$, if a = bq + r then gcd(a, b) = gcd(b, r)Example 86 = 20(7) - 54qcd(86, 20) = 2gcd(20, -54) = 2Alternative proof of our fact Clearly 3a + b = 3a + bBy GCD w R, gcd(3a + b, a) = gcd(a, b)Euclidean Algorithm (EA) Process to compute gcd(a, b) for $a, b \in \mathbb{N}$ 84 = 60(1) + 24 gcd(84, 60) $60 = 24(2) + \underline{12} = gcd(60, 24)$

The last non-zero will be GCD since remainder is non-negative and
$$< b$$
.
Bigger example: Compute $gcd(1239, 735)$

$$1239 = (735)(1) + 504$$

$$735 = 504(1) + 231$$

$$504 = 231(2) + 42$$

$$231 = 42(4) + 21$$

$$42 = 21(2) + 0$$

$$\implies gcd(1239, 735) = 21$$

24 = 12(2) + 0 = gcd(24, 12)

 $gcd(12, 0) = \underline{12}$

Back Substitution

 $\begin{aligned} 21 &= 231 + 42(-5) \\ &= 231 + (-5)(504 + 231(-2)) \\ &= 504(-5) + 231(11) \\ &= 504(-5) + (11)(735 - 504) \\ &= 735(11) + 504(-16) \\ &= 735(11) + (-16)(1239 - 735) \\ &= 1239(-16) + 735(27) \end{aligned}$

6.3 Certificate of Correctness and Bézout's Lemma

For all $a, b, d \in \mathbb{Z}$ where $d \ge 0$. If d|a and d|b and there exists $s, t \in \mathbb{Z}$ such that as + bt = d then d = gcd(a, b).

Example

d = 6, a = 30, b = 42 $b \ge 0, 6|30, 6|42$

6 = 30(3) + 42(-2) $\implies 6 = gcd(30, 42)$ Bézout's Lemma For all integers $a, b \in \mathbb{Z}$, there exists $s, t \in \mathbb{Z}$ such that as + bt = gcd(a, b) $GCD \le R$ a = bq + r then gcd(a, b) = gcd(b, r)GCD CT If $d \ge 0$, d|ad|b and s, t exists as + bt = d, then d = qcd(a, b)BLIf d = gcd(a, b), there exists $x, y \in \mathbb{Z}$ such that ax + by = dExample For all $n \in \mathbb{Z}$, gcd(n, n+1) = 1Proof 1 Since n + 1 = n(1) + 1, GCD w R gives us gcd(n+1,n) = gcd(n,1). However gcd(n, 1) = 1 because 1 is the only positive divisor of 1 $\underline{\text{Proof } 2}$ Since $(n+1)(1) + n(-1) = 1, 1 \ge 0$ 1|n+1 and 1|n, then gcd(n+1,n) = 1 by GCD CT. Proof 3 Suppose $d \in \mathbb{Z}, d|(n+1)$ and d|n then by DIC, d|1[(n+1)(1) + n(-1) = 1] Thus 1 is the only divisor, that is GCD = 1. Example Let $a, b, x, y \in \mathbb{Z}$, where $gcd(a, b) \neq 0$. If ax + by = gcd(a, b) then gcd(x, y) = 1. Proof Let $a, b, x, y \in \mathbb{Z}$. Assume $gcd(a, b) \neq 0$ and ax + by = gcd(a, b)Division gives $\left(\frac{a}{acd(a,b)}\right)x + \left(\frac{b}{acd(a,b)}\right)y = 1$ since $gcd(a,b) \neq 0$ Since $\frac{a}{qcd(a,b)}, \frac{b}{qcd(a,b)} \in \mathbb{Z}$ Moreover $1 \ge 0, 1 | xand1 | y$ Thus by GCD LT, gcd(x, y) = 1Example For all $a, b, c \in \mathbb{Z}$ If gcd(a, c) = 1 then gcd(ab, c) = gcd(b, c)Proof Let $a, b, c \in \mathbb{Z}$. Assume gcd(a, c) = 1. Let d = gcd(b, c)By BL, there are integers x, y, s, t such that ax + cy = 1 and bs + ct = dmultiply to get

(ax+cy)(bs+ct)=d

Thus

ab(xs) + c(axt + ybs + yct) = d

Since xs, axt + ybs + yct are integers, $d \ge 0$ (by definition), d|c (by definition), d|ab, we get d = gcd(ab, c) by GCD CT.

6.4 Extended Euclidian Algorithm

Solve 56x + 35y = gcd(56, 35) for $x, y \in \mathbb{Z}$

x	y	r	q
1	0	56	$\leftarrow 56 = 35(1) + 21$
0	1	35	-
1	-1	21	1
-1	2	14	1
<u>2</u>	<u>-3</u>	$\left \begin{array}{c} \frac{l}{0} \end{array} \right $	$\frac{1}{2}$

Thus gcd(36, 35) = 7, x = 2, y = -3

EEA with 408 and 170

x	y	r	q
1	0	408	$\leftarrow 408 = 170(2) + 68$
0	1	170	÷
2	-2	68	2
-2	5	34	2
		0	

Solve -170x + 408y = d for $x, y \in \mathbb{Z}$ and d = gcd(-170, 408)

Order is irrelevant for gcd.

From before d = 34 and x = -5, y = -2

6.5 Further Properties of the Greatest Common Divisor

Proof of CDD GCD (Common Divisor Divides)

Let $a, b, c \in \mathbb{Z}$. Assume c|a and c|b. By BL, ax + by = gcd(a, b) for some $x, y \in \mathbb{Z}$ By DIC, c|ax + by. That is c|gcd(a, b). <u>Definition</u> Let $a, b \in \mathbb{Z}$ When gcd(a, b) = 1, we say a and b are coprime. <u>Coprimeness Characterization Theorem</u> a and b are coprime iff there exists integers s and t with as + bt = 1. Sketch of CCT Proof \implies BL $\Leftarrow =$ GCD CT Exercise Let $a, b, c \in \mathbb{Z}$. If gcd(a, b, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1a) Prove or disprove Let $a, b, c \in \mathbb{Z}$. Assume gcd(a, b) = 1. By CCT, (ab)s + ct = 1 for some $s, t \in \mathbb{Z}$ Since $bs, t \in \mathbb{Z}, gcd(a, c) = 1$ by CCT Since $as, t \in \mathbb{Z}, gcd(b, c) = 1$ by CCT b) Prove or disprove the converse If qcd(a, c) and qcd(b, c), then qcd(ab, c) = 1Let $a, b, c \in \mathbb{Z}$. Assume gcd(a, c) = gcd(b, c) = 1. By CCT, as + ct = 1 and bx + cy = 1 for some $s, t, x, y \in \mathbb{Z}$ Multiply to yield (as + ct)(bx + cy) = 1After expanding and rearranging, CCT gives us gcd(a, b) = 1 because $sx, asy + tbx + txy \in \mathbb{Z}$. Division by GCD (DB GCD) If $gcd(a, b) = d \neq 0$ then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$. Let $a, b \in \mathbb{Z}$ such that $gcd(a, b) = d \neq 0$. By BL, ax + by = d for some $x, y \in \mathbb{Z}$. Divide by d $\frac{a}{d}x + \frac{b}{d}y = 1$, since $d \neq 0$ Note d|a and b|d by definition of d, so $\frac{a}{d}, \frac{b}{d}$ are \mathbb{Z} . Thus $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$ by CCT Proof of Coprimeness and Divisibility (CAD) If a, b and c are integers and c|ab and gcd(a, c) = 1, then c|b. Proof Let $a, b, c \in \mathbb{Z}$. Assume c|ab and gcd(a,c) = 1ax + cy = 1 by CCT for some $x, y \in \mathbb{Z}$ Multiply both sides by b to get abx + cby = bWe know c|c and we assumed c|ab so by DIC, c|[(ab)x + (c)by] (because $x, by \in \mathbb{Z}$). That is, c|bNote $\forall a, b, c \in \mathbb{Z}, (c|ab) \implies (c|a \lor c|b) \text{ is } \underline{\text{false}}.$

6.6 Prime Numbers

Prime Factorization

Every integer greater than 1, can be written as the product of primes.

 $\underline{\text{Proof}}$

Proceed by Strong Induction (can't use POMI) to prove that an integer n > 1 can always be written as a product of primes.

1229

Base Case

When n = 2, n by itself is a product of primes since 2 is prime.

Inductive Step

Let k be an arbitrary integer greater than 2.

Assume i can be written as the product of primes for all integers i such that $2 \le i \le k$.

We will consider cases for n = k + 1

When k + 1 is prime, there is nothing to prove.

Otherwise, k + 1 is composite.

That is k+1 = ab for some $a, b \in \mathbb{Z}$ satisfying 1 < a, b < k+1

By our inductive hypothesis, a and b can each be written as the product of primes. Multiplying these products gives a product of primes equal to k + 1. Hence the statement is true by POSI.

Euclid's Theorem

There are infinitely many primes.

Proof

By way of contradiction, assume there are a finite number of primes. We will name them p_1, p_2, \ldots, p_k for some $k \in \mathbb{N}$.

Consider $N = (p_1 \cdot p_2 \dots p_k) + 1$

By PF, $p_i | N$ for some $i \in \{1, 2, \ldots, k\}$

However, also $p_i|(p_1 \cdot p_2 \dots p_k)$ by definition.

By DIC, we get $p_i | N - (p_1 \cdot p_2 \dots p_k)$

That is, p|1. This is a contradiction because 1 is the only positive divisor of 1.

Euclid's Lemma

For all $a, b \in \mathbb{Z}$ and primes p, if p|ab, then p|a or p|b.

Proof

Let $a, b \in \mathbb{Z}$. Let p be prime.

Assume p|ab and $p \nmid a$ (elimination).

Since the only positive divisors of p are 1 and p, and $p \nmid a, gcd(a, p) = 1$.

Thus p|b by CAD.

6.7 Unique Factorization Theorem

Every natural number > 1 can be written as a product of prime factors uniquely, apart from order.

Example

Let p be prime. Prove that 13p + 1 is a perfect square iff p = 11. If $p = 11, 13(11) + 1 = 144 = 12^2 \checkmark$ Other direction: $13p + 1 = k^2$ 13p = (k + 1)(k - 1)UFT $\rightarrow 13 = k + 1$ or 13 = k - 1 $k = 12 \checkmark$ or k = 14 (wrong).

6.8 Prime Factorization and the Greatest Common Divisor

If $a = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ and $b = p_1^{\beta_1} \dots b = p_k^{\beta_k}$ where p_1, p_2, \dots, p_k are primes and all exponents are non-negative.

$$gcd(a,b) = p_1^{\gamma_1} p_2^{\gamma_2} \dots$$
 where $\gamma_i = min\{\alpha_i, \beta_1\}$ for $i \dots k$

Examples

```
gcd(13^2 \cdot 7^{100}, 16^3 \cdot 7^{44})gcd(7^{100}11^013^2, 7^{44}11^313^0)= 7^{44} \cdot 11^0 \cdot 13^0= 7^{44}
```

And

```
gcd(20000, 30000)gcd(2^{5}5^{4}, 2^{4}3^{1}5^{4})= 2^{4} \cdot 5^{4} \cdot 3^{0}= 2^{4} \cdot 5^{4}= 10000
```

7 Linear Diophantine Equations

7.1 The Existence of Solutions in Two Variables

Given $a, b, c \in \mathbb{Z}$, find $x, y \in \mathbb{Z}$ such that ax + by = c

- Is there a solution? LDET 1
- If so, how can we find one? EEA
- And can we find all solutions? LDET 2

Examples of

- 1. 143x + 253y = 11
- 2. 143x + 253y = 155
- 3. 143x + 253y = 154

1) Use EEA

y	x	r	q
1	0	253	
0	1	143	
1	-1	110	1
-1	2	33	1
4	-7	11	3
-13	23	3	0

Thus $\{(-7+23n, 4-13n) : n \in \mathbb{Z}\}$

Thus 143(-7) + 253(4) = 11, (-7, 4) is a solution.

2) There is no solution because $x, y \in \mathbb{Z}$, 11|(143x + 253y) but 11|155 (not a multiple of 11).

3) Multiply equation in 1) by $\frac{154}{11} = 14$ to get:

143(-98) + 153(56) = 154

Other solutions to 1)?

1229

Rewrite as $y = \frac{-13}{23}x + \frac{1}{23}$

LDET 1

Let $a, b \in \mathbb{Z}$ (both not zero) and let d = gcd(a, b) the LDE ax + by = c has a solution if and only if d|c. First, suppose there exists $x, y \in \mathbb{Z}$ such that ax + by = c.

We know d|a and d|b (by definition of gcd), so d|c by DIC.

Next we suppose d|c to prove the other direction.

By BL there exists $s, t \in \mathbb{Z}$ such that as + bt = d.

Now we also know dk = c for some integer k. Multiplying by k gives

$$a(bk) + b(tk) = dk = c$$

Since sk and $tk \in \mathbb{Z}$, the proof is complete.

7.2 Finding All Solutions in Two Variables

LDET 2

Let gcd(a, b) = d where $a \neq 0, b \neq 0$.

If $(x, y) = (x_0, y_0)$ is one solution to the LDE ax + by = c, then the complete solution is

$$\{(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n) : n \in \mathbb{Z}\}$$

LDET 2 Example

We found that (x, y) = (-7, 4) was a particular solution to 143x + 253y = 11. LDET 2 tells us the complete solution is $\{(-7 + \frac{253}{11}n, 4 - \frac{143}{11}n) : n \in \mathbb{Z}\}$

 $= \{ (-7 + 23n, 4 - 13n) : n \in \mathbb{Z} \}$

Examples of some solutions are:

$$n = 0 \quad (-7, 4) n = 1 \quad (16, -9) n = -1 \quad (-30, 17)$$

Exercise

Solve the following LDEs:

1) 28x + 35y = 60

 $7 \nmid 60,$ no solutions.

2) 343x + 259y = 658

$$343(-3) + 259(4) = 7$$

$$343(-3 \cdot 94) + 259(4 \cdot 94) = 7 \cdot 94$$

$$343(282) + 259(376) = 658$$

$$\{(-3 + 37n, 4 + 49n) : n \in \mathbb{Z}\}$$

LDET 2 Proof

Let $a, b, c \in \mathbb{Z}$ where $d = gcd(a, b), a \neq 0$ and $b \neq 0$. Assume $ax_0 + by_0 = c$ for some $x_0, y_0 \in \mathbb{Z}$. Define $S = \{(x, y) : ax + by = c \text{ and } x, y \in \mathbb{Z}\}$ and $T = \{(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n) : n \in \mathbb{Z}\}$ Must show how $S = T(S \subseteq T, T \subseteq S)$ We begin by showing $T \subseteq S$. Let $n \in \mathbb{Z}$. We must show $(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n) \in S$. To do this we substitute into ax + by to get $a(x_0 + \frac{b}{d}n) + b(y_0 - \frac{a}{d}n) = ax_0 + by_0 = c$ Indeed $T \subseteq S$. Now we must show $S \subseteq T$. Let $(x, y) \in S$. Then ax + by = c. $c_0 + by_0 = c.$ Thus $a(x - x_0) = -b(y - y_0)(\star)$ Since $d \neq 0$, we divide and get the following. $\frac{a}{d}(x-x_0) = \frac{-b}{d}(y-y_0)$ This tells us $\frac{b}{d} \left| \frac{a}{d} (x - x_0) \right|$ $n \in \mathbb{Z}$. Exercise 15x - 24y = 9 $0 \le x, y \le 20.$ We will solve the LDE first. 5x - 8y = 3By inspection, a solution (7,4). $-1-8n\geq 0\implies n\leq -1$ $-1 - 8n \le 20 \implies n \ge -2$ $-1 - 5n \ge 0 \implies n \le -1$ $-1 - 5n \le 20 \implies n \ge -4$ Thus n = -1 or n = -2.

Thus the final answer is $\{(7, 4), (15, 9)\}$

8 **Congruence and Modular Arithmetic**

8.1 Congruence

-1 is congruent to 7 modulo 8. Definition

We also know
$$ax_0 + by_0 = a$$

Equating gives $ax - ax_0 = -by + by_0$

By DBGCD, $gcd(\frac{a}{d}, \frac{b}{d}) = 1$. By CAD, we know $\frac{b}{d}|(x - x_0)$. Thus $\frac{b}{d}|(x - x_o)$. Thus $\frac{b}{d}n = x - x_0$ for some

That is
$$x = x_0 + \frac{b}{d}n$$
. Substitution into (\star) yields $y = y_0 - \frac{a}{d}n$. Thus $(x, y) \in T$.

Find all $x, y \in \mathbb{Z}$ satisfying

Note that it is equivalent to

So by LDET 2, the complete solution is

x = -1 - 8n and y = -1 - 5n where $n \in \mathbb{Z}$

We also need

Let $a, b \in \mathbb{Z}$. Let $m \in \mathbb{N}$. We say a is congruent to b module m when m|(a-b).

We write

 $a \equiv b \pmod{m}$

Otherwise we write $a \not\equiv b \pmod{m}$.

Examples

 $\begin{array}{l} -1 \equiv 7 \pmod{8} \\ -1 \equiv -1 \pmod{8} \\ -1 \equiv 15 \pmod{8} \\ 15 \equiv -1 \pmod{8} \\ 15 \equiv 7 \pmod{8} \\ \text{Let } a, b \in \mathbb{Z}. \text{ Let } m \in \mathbb{N} \end{array}$

 $a \equiv b \pmod{m}$ $\iff m | (a - b)$ $\iff \exists k \in \mathbb{Z}, mk = a - b$ $\iff \exists k \in \mathbb{Z}, a = mk + b$

8.2 Elementary Properties of Congruence

Let $a, b, c \in \mathbb{Z}$. Let $m \in \mathbb{N}$. Reflexive: $a \equiv a \pmod{m}$ Symmetric: $a \equiv b \pmod{m} \implies b \equiv a \pmod{m}$ Transitivity: $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m} \implies a \equiv c \pmod{m}$ Proof of Reflexivity: Since a - a = 0 and m0 = 0, we have m|(a - a). That is $a \equiv a \pmod{m}$. Proof of Symmetric: Assume $a \equiv b \pmod{m}$ This means mk = a - b for some $k \in \mathbb{Z}$. m(-k) = b - a. Since $-k \in \mathbb{Z}, m | (b-a)$. That is $b \equiv a \pmod{m}$. Proof of Transitivity: Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. m|(a-b), m|(b-c).By DIC, m|(a-c). That is $a \equiv c \pmod{m}$. Proposition 2 If $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, then 1. $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$ 2. $a_1 - a_2 \equiv b_1 - b_2 \pmod{m}$ 3. $a_1a_2 \equiv b_1b_2 \pmod{m}$

Proof of 1.

1229

 $mk = a_1 - b_1 \quad m\ell = a_2 - b_2$

$$a_{1} + a_{2} = (mk + b_{1}) + (m\ell + b_{2})$$
$$= m \underbrace{(k + \ell)}_{\in \mathbb{Z}} + b_{1} + b_{2}$$

Proof of 3.

$$a_1a_2 = (mk + b_1) + (m\ell + b_2)$$
$$= (b_1 \cdot b_2) + m \underbrace{(\dots)}_{\text{some integer}}$$

\underline{CAM} (Generalization of Proposition 2)

For all positive integers n, for all integers $a_1 \dots a_n$ and $b_1 \dots b_n$, if $a_i \equiv b_i \pmod{m}$ for all $1 \leq i \leq n$ then

$$a_1 + a_2 + \ldots + a_n \equiv b_1 + b_2 \ldots + b_n \pmod{m}$$
$$a_1 a_2 \ldots a_n \equiv b_1 b_2 \ldots b_n \pmod{m}$$

Congruence of Power

For all positive integers n and $a, b \in \mathbb{Z}$. $a \equiv b \pmod{m} \implies a^n \equiv b^n \pmod{m}$. Question: Does 7 divide $5^9 + 62^{2000} - 14$

Is $5^9 + 62^{2000} - 14 \equiv 0 \pmod{7}$?

We will "reduce modulo 7"

$$-14 \equiv 0 \pmod{7}$$

$$\implies 5^9 + 62^{2000} - 14 \equiv 5^9 + 62^{2000} + 0 \pmod{7}$$

$$\equiv 5^9 + (-1)^{2000} \pmod{7} \leftarrow \text{ by CP}$$

$$\equiv 5^9 + 1 \pmod{7}$$

$$\equiv (-2)^9 + 1 \pmod{7}$$

$$\equiv (-2)^3 (-2)^3 (-2)^3 + 1 \pmod{7}$$

$$\equiv (-1)(-1)(-1) + 1$$

$$\equiv 0 \pmod{7}$$

Congruence and Division

Examples

Let $a, b, c \in \mathbb{Z}$. Let $m \in \mathbb{N}$.

If $ac \equiv bc \pmod{m}$ and gcd(c,m) = 1 then $a \equiv b \pmod{m}$.

Examples

1) $3 \equiv 24 \pmod{7}$ $1 \equiv 8 \pmod{7}$ 2) $3 \equiv 27 \pmod{6}$ $1 \not\equiv 9 \pmod{6}$

 $\underline{\text{Exercise}}$

1229

Does 72 divide $4(-66)^{2022} + 800$ By CAR, CAM and CP: $4(-66)^{2022} + 800 =$

$$4(-66)^{2022} + 800 \equiv 2(-6)^2 2(-11)^2 (-66)^{2020} + 800$$
$$\equiv 0 + 8 \pmod{72}$$
$$\equiv 8 \pmod{72}$$

But $8 \not\equiv 0 \pmod{72}$

Thus by CER, our number is not congruent to 0 modulo 72. Thus it does not.

Proof of CD

Let $a, b, c \in \mathbb{Z}$. Let $m \in \mathbb{N}$. Assume $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1. Then m|(ac - bc) or equivalently m|c(a - b). By CAD, m|(a - b). That is, $a \equiv b \pmod{m}$.

8.3 Congruence and Remainders

Congruent iff Same Remainder (CISR) and Congruent to Remainder (CTR) Examples

1) What is the remainder when $x = 77^{100}(999) - 6^{83}$ is divided by 4.

We will find r such that $0 \le r < 4$ and $x \equiv r \pmod{4}$. By CTR, this will be our answer. By CER, CAM, and CP:

$$x \equiv 1^{100}(-1) - 36 \cdot 6^{81} \pmod{4}$$
$$x \equiv -1 \pmod{4}$$
$$\equiv 3 \pmod{4}$$

The answer is 3.

2) What is the last digit (units) of $x = 5^{32}3^{10} + 9^{22}$ The answer will be r such that $x \equiv r \pmod{10}$ and $0 \le r < 10$ (By (TR)). By CER, CAM, and CP

$$x \equiv (5^2)^{16} (3^2)^5 + (-1)^{22} \pmod{10}$$

$$\equiv (5^2)^8 (-1)^5 + 1 \pmod{10}$$

$$\equiv (5^2)^4 (-1) + 1$$

$$\equiv -5 + 1 \pmod{10}$$

$$\equiv 6 \pmod{10}$$

The answer is 6.

 $\begin{array}{l} \underline{\text{Proof of CISR}}\\ \text{Let } a,b\in\mathbb{Z}. \text{ Let } m\in\mathbb{N}.\\ \text{By DA,}\\ a=mq_a+r_a, \quad 0\leq r_a<m\\ b=mq_b+r_b, \quad 0\leq r_b<m\\ \text{Then, } a-b=m(q_a-q_b)+(r_a-r_b)\\ \text{where } -m< r_a-r_b<m\\ \text{Now we assume } r_a=r_b. \end{array}$

Thus, m|(a-b) by our equation for a-b. That is $a \equiv b \pmod{m}$.

Next, we assume $a \equiv b \pmod{m}$.

Then mk = a - b for some $k \in \mathbb{Z}$.

Substituting and rearranging gives,

 $m(k - q_a + q_b) = r_a - r_b$

So $m|(r_a - r_b)$ since $k - q_a + q_b \in \mathbb{Z}$. Thus $r_a - r_b = 0$ by our inequality for $r_a - r_b$. We get $r_a = r_b$, completing the proof.

$\underline{\mathrm{CTR}}$

For all a, b with $0 \le b < m$, $a \equiv b \pmod{m}$ iff a has remainder b when divided by m.

m|(a-b) if a = mr + b

Divisibility Tests

Let $n \ge 0$ be an integer. Then we can write.

 $n = d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_1 10 + d_0$ for digits $d_k, d_{k-1}, \dots, d_1, d_0$

What about 3?

Since $10 \equiv 1 \pmod{3}$. $n \equiv d_k + d_{k-1} + \ldots + d_1 + d_0 \pmod{3}$

Thus, by CER

 $n \equiv 0 \pmod{3}$ iff $d_k + d_{k-1} + \ldots + d_1 + d_0 \equiv 0 \pmod{3}$.

 $10 \equiv 1 \pmod{9}$ so we can deduce that n is divisibly by 9 iff the sum of its digits are divisible by n. e.g. 4456217395

4 + 4 + 5 + 6 + 2 + 1 + 7 + 3 + 9 + 5 = 46. 46 is not divisible by 9, the number is not divisible by 9. 11?

8217993

8 - 2 + 1 - 7 + 9 - 9 + 3 = 3 $10 \equiv -1 \pmod{11}$

8.4 Linear Congruences

Let $m \in \mathbb{N}$. Let $a, c \in \mathbb{Z}$ where $a \neq 0$. Find all $x \in \mathbb{Z}$ such that

 $ax \equiv c \pmod{m}$

- Is there a solution?
- If so can we find one?
- If so can we find them all?

Example

Solve $4x \equiv 5 \pmod{8}$

 $\iff 8|(4x-5)$ $\iff 8k = 4x - 5 \text{ for some } k \in \mathbb{Z}$ $\iff 4x - 8k = 5 \text{ for some } k \in \mathbb{Z}$ $\iff 4x = 8y = 5 \text{ for some } y \in \mathbb{Z}$

Linear Diophantine $\implies gcd(4,8) = 4$. $4 \nmid 5$. \therefore no solution, \therefore no x-values.

 $5x \equiv 3 \pmod{7}$

Rewrite

$$5x + 7y = 3 \implies x \in \{2 + 7n : n \in \mathbb{Z}\}$$
$$gcd(5,7) = 1 \quad 1|3\checkmark$$

Answer in congruence is $x \equiv 2 \pmod{7}$.

By CTR, every integer is congruent to $\{0, 1, 2, 3, 4, 5, 6\}$.

Try all of them and see which one works.

By CER, CAM, if x_0 is a solution, $x \equiv x_0 \pmod{7}$ are solutions.

GCD is the number of solutions in the set $\{0, 1, 2, \ldots\}$

$$2x \equiv 4 \pmod{6}$$
$$2(0) \not\equiv 4 \pmod{6}$$
$$\vdots$$
$$2(2) \equiv 4 \pmod{6}$$
$$\vdots$$
$$2(5) \equiv 4 \pmod{6}$$

Complete solution is $x \equiv 2, 5 \pmod{6}$.

Using LDE's we get $\{2 + 3n : n \in \mathbb{Z}\}$.

Complete solution is $x \equiv 2 \pmod{3}$.

 $x \equiv 2,5 \pmod{6}$ and $x \equiv 2 \pmod{4}$ represent the exact same set of integers.

Linear Congruence Theorem (LCT)

Complete solution $\{x \in \mathbb{Z} : x \equiv x_0 \pmod{\frac{m}{d}}\}$ equivalently,

$$\{x \in \mathbb{Z} : x \equiv x_0, \underbrace{x_0 + \frac{m}{d}, x_0 + 2\frac{m}{d}, \dots, x_0 + (d-1)\frac{m}{d}}_{d \text{ number of solutions}}\}$$

Informally, LCT tells us there

- is one solution modulo $\frac{m}{d}$ or
- d solutions modulo m

Solve $9x \equiv 6 \pmod{15}$

 $d = gcd(9, 15) = 3, 3|6\checkmark$ $\{x \in \mathbb{Z} : x \equiv 4 \pmod{5}\}$

8.5 Congruence Classes and Modular Arithmetic

Definition

Let $m \in \mathbb{N}$. Let $a \in \mathbb{Z}$.

The congruence class of $a \mod m$ is

$$[a] = \{x \in \mathbb{Z} : x \equiv a \pmod{m}\}$$

1229

Example

Let m = 5

The congruence class of 3 modulo 5 is:

$$[3] = \{x \in \mathbb{Z} : x \equiv 3 \pmod{5}\}\$$

= {..., -12, -7, -2, 3, 8, 13, 18, 23, ...} infinite set of integers

- [3] is an infinite set
- [3] = [23] = [-7] (both subsets of each other)
- [3] is our most common representative from this set because $0 \le 3 \le 5$

Operations

Let $m \in \mathbb{N}$. Let $a, b \in \mathbb{Z}$. We define

$$[a] + [b] = [a+b]$$
$$[a][b] = [ab]$$

Examples (m = 5)

$ \begin{array}{c} + \\ [0] \\ [1] \\ [2] \\ [3] \\ [4] \end{array} $	$ \begin{array}{c c} [0] \\ [1] \\ [2] \\ [3] \\ [4] \end{array} $	$ \begin{bmatrix} 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 0 \end{bmatrix} $	$ \begin{array}{c} [2]\\[3]\\[4]\\[0]\\[1]\end{array} $	$\begin{bmatrix} 3 \\ [3] \\ [4] \\ [0] \\ [1] \\ [2] \end{bmatrix}$	$ \begin{bmatrix} 4 \\ \\ [0] \\ \\ [1] \\ \\ [2] \\ \\ [3] \end{bmatrix} $
$\begin{array}{c} \times \\ \hline [0] \\ [1] \\ [2] \\ [3] \\ [4] \end{array}$	[0] [0] [0] [0] [0]	$ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ [4] \end{bmatrix} $	$ \begin{array}{c} [2] \\ [0] \\ [2] \\ [4] \\ [1] \\ [3] \end{array} $	[3] [0] [3] [1] [4] [2]	$[4] \\ [0] \\ [4] \\ [3] \\ [2] \\ [1] \\ [1]$

Note

Addition is well-defined

[8] + [31] = [39] = [4]

[-7] + [16] = [9] = [4]

Multiplication is as well.

Definition

Let $m \in \mathbb{N}$. The integers modulo m are

$$\mathbb{Z}_m = \{ [0], [1], [2], \dots, [m-1] \} \quad |\mathbb{Z}_m| = m \text{ finite} \\ = \{ [x] : x \in \mathbb{Z} \}$$

 $a \equiv b \pmod{m} \iff m | (a-b) \iff \exists k \in \mathbb{Z}, a-b = km \iff \exists k \in \mathbb{Z}, a = km + b$ $\iff a \text{ and } b \text{ have the same remainder when divided by } m \iff [a] = [b] \text{ in } \mathbb{Z}_m$

Let $[a] = \mathbb{Z}_n$ where $m \in \mathbb{N}$.

[0] is the additive identity [a] + [0] = [a][1] is the multiplication identity [a][1] = [a][-a] is the additive inverse of $[a] \implies [a] + [-a] = [0]$ Multiplicative inverse of [a] (if exists) is an elem [b] such that [a][b] = [b][a] = [1] and we write $[b] = [a]^{-1}$. Examples

In \mathbb{Z}_{12} does $[5]^{-1}$ exist? Does $[6]^{-1}$ exist?

[5][x] = [1]

[x] = [5] is a solution, so $[5]^{-1} = [5]$

[6][x] = [1]. Only 12 combinations, none where $6x \equiv 1 \pmod{12}$.

Modular Arithmetic Solution

Let $gcd(a,m) = d \neq 0$.

The equation [a][x] = [c] in \mathbb{Z}_n has a solution iff d|c.

If $[x] = [x_0]$ is one solution, then there are d solutions given by,

$$\{[x_0], [x_0 + \frac{m}{d}], [x_0 + 2\frac{m}{d}], \dots, [x_0 + (d-1)\frac{m}{d}]\}$$

Review

 $\mathbb{Z}_{10}, [3] = [13] = [23] = [-17]$ In \mathbb{Z}_{10} , solve 1) [12][x] + [3] = [8] [2][x] = [5] has no solution. 2) [15][x] + [7] = [12] $[5][x] = [5]. \ gcd(5, 10) = 5 \implies 5 \text{ solutions.} \ \frac{10}{5} = 2, \text{ spanned by } 2 \downarrow$ [1], [3], [5], [7], [9] 3) [9][x] + [1] = [8] $[9][x] = [7]. \ gcd(9, 10) = 1 \implies 1 \text{ solution.}$ $x = 3, 3 \cdot 9 = 27, 27 - 7 = \underline{20}.$ $\underline{\text{Inverses in } \mathbb{Z}_m (\text{INV } \mathbb{Z}_m) }$ $\text{Let } a \in \mathbb{Z} \text{ with } 0 \le a \le m - 1. \ [a] \in \mathbb{Z}_m \text{ has a multiplicative inverse iff } gcd(a, m) = 1. \text{ Multiplicative inverse is unique.}$

Inverses in
$$\mathbb{Z}_p$$
 (INV \mathbb{Z}_p)

For all prime numbers p and $[a] \in \mathbb{Z}_p$ have a unique multiplicative inverse.

8.6 Fermat's Little Theorem $(F\ell T)$

Let p be prime. Let $a \in \mathbb{Z}$. If $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$. <u>Examples</u> $4^6 \equiv 1 \pmod{7}$ $39^6 \equiv 1 \pmod{7}$ $13^2 \equiv 1 \pmod{7}$ but not by $F\ell T$. <u>Exercise</u> What is the remainder when 7^{92} is divided by 11? Since 11 is prime and $11 \nmid 7$, $7^{10} \equiv 1 \pmod{11}$.

 $7^{92} \equiv (7^{10})^9 \cdot 7^2 \equiv 1^9 \cdot 7^2 \equiv 49 \equiv 5 \pmod{11}$

By CAM, CER, CP. Thus, the remainder is 5.

Notes

We can write $a^{p-1} \equiv 1 \pmod{p}$ as $[a^{p-1}] = [1]$ in \mathbb{Z}_p . In this case $[a]^{-1} = [a^{p-2}]$ Idea of Proof of F ℓ T Let a = 4 and p = 7. { $[4], [2 \cdot 4], [3 \cdot 4], [4 \cdot 4], [5 \cdot 4], [6 \cdot 4]$ } $= {[4], [1], [5], [2], [6], [3]$ } No zero, all distinct. <u>Corollary to F ℓ T</u> Let p be prime. Let $a \in \mathbb{Z}$. Then $a^p \equiv a \pmod{p}$ <u>Proof</u> Let p be prime. Let $a \in \mathbb{Z}$. We will use cases. When $p \nmid a$, by F ℓ T, $a^{p-1} \equiv 1 \pmod{p}$. Multiplying gives $a^p \equiv a \pmod{p}$ by CAM.

When $p|a, a \equiv 0 \pmod{p}$. Thus $a^p \equiv 0 \pmod{p}$ by CP. Thus $a^p \equiv a \pmod{p}$ by CER.

The statement is true in all cases. \blacksquare

Exercise

What is the remainder when $8^{(9^7)}$ is divided by 11.

$$9^{7} \equiv -1 \pmod{10}$$
$$\equiv 9 \pmod{10}$$
$$8^{9^{7}} \equiv 8^{10q+r} \equiv (8^{10})^{q} 8^{r} \equiv 8^{r} \pmod{11}$$

Simultaneous Congruences Examples

Solve $x \equiv 2 \pmod{13}$, $x \equiv 17 \pmod{29}$. If moduli are coprime, always get one solution.

Rewrite the second statement as x = 17 + 29k where $k \in \mathbb{Z}$.

Thus we want to find all k satisfying:

```
17 + 29j \equiv 2 \pmod{13}

\iff 29k \equiv 11 \pmod{13}

\iff 3k \equiv 11 \pmod{13}

\iff k \equiv 8 \pmod{13}

\iff k \equiv 8 \pmod{13}

\iff k \equiv 8 + 13\ell \text{ for some } \ell \in \mathbb{Z}
```

Sub to get

$$\begin{aligned} x &= 17 + 29(8 + 13\ell) \\ x &= 17 + 29 \cdot 8 + 29 \cdot 13\ell \\ x &= 249 + 377\ell \end{aligned}$$

The solution is $x \equiv 249 \pmod{377}$

8.7 Chinese Remainder Theorem

Suppose $gcd(m_1, m_2) = 1$ and $a_1, a_2 \in \mathbb{Z}$

There is a unique solution module m_1m_2 to the system

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$

That is, once we have one solution $x = x_0$, CRT also tells us the full solution is $x \equiv x_0 \pmod{m_1 m_2}$ Generalized CRT

If $m_1, m_2, \ldots, m_k \in \mathbb{N}$ and $gcd(m_i, m_j) = 1$ then for any integers there exists a solution to simultaneous congruences.

```
n \equiv a_1 \pmod{m_1}
:
n \equiv a_k \pmod{m_k}
```

The complete solution is $n \equiv n_0 \pmod{m_1 m_2 \dots m_k}$

Exercises

 $x \equiv 4 \pmod{6}, x \equiv 2 \pmod{8}.$

Rewrite the second equation as x = 2 + 8k where $k \in \mathbb{Z}$. Sub into the first equation to get

$2 + 8k \equiv 4$	$\pmod{6}$
$8k \equiv 2$	$\pmod{6}$
$2k \equiv 2$	$\pmod{6}$

Since 1 is a solution, the full solution is $k \equiv 1 \pmod{3}$ by LCT.

-7

Rewrite as $k = 1 + 3\ell$ where $\ell \in \mathbb{Z}$. Sub to get $x = 2 + 8(1 + 3\ell), x = 10 + 24\ell$. Final answer is $x \equiv 10 \pmod{24}$.

8.8 Splitting the Modulus

Let m_1 and m_2 be coprime positive integers. For any two integers x and a,

$$x \equiv a \pmod{m_1}, x \equiv a \pmod{m_2} \iff x \equiv a \pmod{m_1 m_2}$$

Exercise

What is the units digit of $8^{(9^7)}$?

Rough

$$8^{(9^{7})} \equiv r \pmod{10}$$

$$r \equiv 8^{(9^{7})} \pmod{2}$$

$$r \equiv 8^{(9^{7})} \pmod{2}$$

$$r \equiv 0 \pmod{2}$$

$$8^{(9^{7})} \equiv 3^{(9^{7})} \pmod{5}$$

$$9 \equiv 1 \pmod{4}$$

$$\therefore 9^{7} \equiv 1 \pmod{4}$$

$$\therefore 9^{7} \equiv 4\ell + 1 \text{ for some } \ell \in \mathbb{Z}$$

So we get

$$8^{(9')} \equiv 3^{4k+1} \equiv (3^4)^k \cdot 3 \equiv 1^k 3 \equiv 3 \pmod{5}$$

To complete the problem, we solve

 $r \equiv 0 \pmod{2}$ $r \equiv 3 \pmod{5}$ $r \equiv 8 \pmod{10}$

 $8^{(9^7)} \equiv r \pmod{11}, 8^{10} \equiv 1 \pmod{11}$ by $F\ell T$

9 The RSA Public-Key Encryption Scheme

Cool history lesson about William Tutte

Message \rightarrow encrypt to transmit cipher to decrypt to message

Math functions (easy to encrypt), hard to decrypt (invert) without info.

RSA Scheme

Setup (Bob)

- 1. Randomly choose two large, distinct primes p and q and let n = pq
- 2. Select arbitrary integer e such that gcd(e, (p-1)(q-1)) = 1 and 1 < e < (p-1)(q-1)
- 3. Solve $ed \equiv 1 \pmod{(p-1)(q-1)}$ for an integer d where 1 < d < (p-1)(q-1)
- 4. Publish the public key (e, n)
- 5. Keep the private key (d, n) secret, and the primes p and q

Encryption (Alice does the following to send a message as ciphertext to Bob)

- 1. Obtain a copy of Bob's public key (e, n)
- 2. Construct the message M, an integer such that $0 \leq M < n$
- 3. Encrypt M as the ciphertext C, given by $C \equiv M^e \pmod{n}$ where $0 \leq C < n$
- 4. Send C to Bob

Decryption (Bob does the following to decrypt)

- 1. Use the private key (d, n) to decrypt the ciphertext C as the received message R, given by $R \equiv C^d \pmod{n}$ where $0 \leq R < n$
- 2. Claim: R = M

Setup

```
p = 2, q = 11, n = 22

\phi(n) = 10(1 \times 10)

e = 3 \quad gcd(3, 10) = 1

3d \equiv 1 \pmod{10} \leftarrow ed \equiv 1 \pmod{\phi(n)} \text{ where } 0 < d < \phi(n). \ d = 7.

Public key (e, n) \implies (3, 22).

Private key (d, n) \implies (7, 22).

<u>Encryption</u>

Generate message M where 0 \le M < n

M = 8

C \equiv 8^3 \pmod{22} \quad 0 \le C < n

\equiv (-2) \cdot 8 \pmod{22}
```

 $[\]equiv 6 \pmod{22}$

Decryption

$$R \equiv 6^{\prime} \pmod{22} \quad 0 \leq R < n$$
$$\equiv (36)^3 6 \pmod{22}$$
$$\equiv 14^3 \cdot 6 \pmod{22}$$
$$\equiv 84 \cdot 2^2 \cdot 7^2 \pmod{22}$$
$$\equiv (-4) \cdot 6 \cdot 7 \pmod{22}$$
$$\equiv 8 \pmod{22}$$

8 is the original message that Alice wanted to send.

<u>Exercise</u>

Let p = 11, q = 13, e = 23

- public key?
- private key?
- if M = 13 what is C?

Public key: $(c, n) \rightarrow (23, 143)$

Private key: solve $23d\equiv 1 \pmod{10\cdot 12},\, d\equiv 47$

$$C \equiv 13^{23} \pmod{143}$$

$$\equiv 13^{16}13^413^213^1 \pmod{143}$$

$$13^2 \equiv 169 \equiv 26 \pmod{123}$$

$$13^4 \equiv 26^2 \equiv \dots$$

$$\vdots$$

Square and multiply, then use SMT if you know p and q.

10 Complex Numbers

10.1 Standard Form

Complex Numbers

 $\mathbb{N}\subsetneq\mathbb{Z}\subsetneq\mathbb{Q}\subsetneq\mathbb{R}\subsetneq\mathbb{C}$

Examples

- $2 + 3i \leftarrow \text{standard form} \quad \mathbb{C} = \{x + yi : x, y \in \mathbb{R}\}$
- $\frac{1}{2} + (-\sqrt{2})i$
- 0 + 0i = 0
- 1 + 1i = 1 + i

For $z = x + yi \in \mathbb{C}$, we call x the real part and y the imaginary part.

Re(z) and Im(z)

z = w means Re(z) = Re(w) and Im(z) = Im(w)

 $z = 7 + 0i = 7 \implies \mathbb{R} \subsetneq \mathbb{C} \implies z$ is purely real

 $z = 7i \implies$ purely imaginary

Arithmetic

Addition:

1229

 $\begin{array}{l} (a+bi)+(c+di)=(a+c)+(b+d)i\\ (2+3i)+(1+2i)=3+5i \end{array}$

Multiplication:

 $\begin{array}{l} (a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i \\ (2+3i) \cdot (5+4i) = ((2\cdot5) - (3\cdot4)) + ((2\cdot4) + (3\cdot5))i = -2+23i \\ (0+1i) \cdot (0+1i) = -1+0i \\ i^2 = -1 \end{array}$

Informally we can treat elements of \mathbb{C} as "normal" algebraic expressions where $i^2 = -1$ and when we do that "everything works".

0 is the additive identity in \mathbb{C} . -z is the additive inverse of z in \mathbb{C} .

Subtraction

Let $w, z \in \mathbb{C}$. We define

$$z - w = z + (-1 + 0i)w$$

1 is the multiplicative identity in \mathbb{C} . $\frac{a-bi}{a^2+b^2}$ is the unique multiplicative inverse of $a+bi\neq 0$

Division

$$\frac{3+4i}{1+2i} = (3+4i)(1+2i)^{-1}$$
$$= (3+4i)(\frac{1-2i}{5})$$
$$= (3+4i)(\frac{1}{5}-\frac{2}{5}i)$$
$$= (\frac{3}{5}+\frac{8}{5})-\frac{2}{5}i$$
$$= \frac{11}{5}-\frac{2}{5}i$$

Why is $(1+2i)^{-1} = \frac{1-2i}{5}$.

Let
$$(1+2i)^{-1} = x + yi$$
 where $x, y \in \mathbb{R}$
Then $(1+2i)(x+yi) = 1 + 0i$
 $= (x-2y) + (y+2x)i = 1 + 0i$
 $x - 2y = 1$
 $\underbrace{y+2x = 0}_{x = \frac{1}{5}, y = -\frac{2}{5}}_{\text{multiplicative inverse}}$

Alternatively

$$\frac{3+4i}{1+2i} \cdot \frac{1-2i}{1-2i} = \frac{(3+4i)(1-2i)}{5}$$
$$= 11-2i$$
$$= \frac{11}{5} - \frac{2}{5}i$$

Properties of Complex Arithmetic (PCA)

Let $u, v, z \in \mathbb{C}$ with z = x + yi

$$(u+v) + z = u + (v+z)$$

$$u+v = v + u$$

$$z + 0 = z \text{ where } 0 = 0 + 0i$$

$$z + (-z) = 0 \text{ where } -z = -x - yi$$

$$(uv)w = u(vw)$$

$$z \cdot 1 = z \text{ where } 1 = 1 + 0i$$

$$z \neq 0 \implies zz^{-1} = 1 \text{ where } z^{-1} = \frac{x - xi}{x^2 + y^2}$$

$$z(u+v) = zu + zv$$

Proof that multiplicative inverses are unique in $\mathbb{C}.$

Let $z \in \mathbb{C}$ where $z \neq 0$.

Suppose $u \cdot z = 1$ and $v \cdot z = 1$ for $u, v \in \mathbb{C}$.

Then uz = vz

Thus

$$(uz)u = (vz)u$$

 $\implies u(zu) = v(zu)$ by PCA 5
 $u = v \blacksquare$

10.2 Conjugate and Modulus

Warm-up

$$\frac{(1-2i)-(3+4i)}{5-6i}$$

$$= \frac{-2-6i}{5-6i} \cdot \frac{5+6i}{5+6i}$$

$$i^{2022} = -1 \text{ since } (i^2)^{1011}$$

$$6x^3 + (1+3\sqrt{2}i)z^2 - (11-2\sqrt{2}i)z - 6 = 0. \text{ Let } r \in \mathbb{R}.$$

$$6r^3 + (1+3\sqrt{2}i)r^2 - (11-2\sqrt{2}i)r - 6 = 0 + 0i$$

$$6r^3 + r^2 - 11r - 6 = 0 \text{ a}$$

$$3\sqrt{2}r^2 + 2\sqrt{2}r = 0 \text{ b}$$

$$b \implies \underbrace{r=0}_{-\sqrt{2}}, \underbrace{r=-\frac{2}{3}}_{\sqrt{2}}$$

Definition

Let z = a + bi be a complex number in standard form

The complex conjugate of z is $\overline{z} = a - bi$

Examples

 $5 + 6i = 5 - 6i \quad \overline{5 - 6i} = 5 + 6i$ Properties of Complex Conjugate (PCJ) Let $z, w \in \mathbb{C}$. Then, 1. $\overline{\overline{z}} = z$

2. $\overline{z+w} = \overline{z} + \overline{w}$

3. $z + \overline{z} = 2Re(z);$ $z - \overline{z} = 2Im(z)i$ 4. $\overline{zw} = \overline{z} \cdot \overline{w}$ 5. $z \neq 0 \implies \overline{z^{-1}} = \overline{z}^{-1}$

1-4 can be proved by using standard form and showing LHS = RHS.

Proof of 5.

Suppose $z \in \mathbb{C}$ where $z \neq 0$.

Therefore z^{-1} exists and $zz^{-1} = 1$ by PCA.

We get $\overline{zz^{-1}} = \overline{1}$.

Thus $\overline{z}\overline{z^{-1}} = 1$. That is, $\overline{z^{-1}} = \overline{z}^{-1}$

Exercise

Solve $z^2 = i\overline{z}$

Rough work

$$(a+bi)^{2} = i(a-bi)$$
$$a^{2} - b^{2} + 2abi = b + ia$$
$$a^{2} - b^{2} = b$$
$$2ab = a$$

When a = 0, b = 0, b = i.

When $a \neq 0, b = \frac{1}{2}, a = \frac{\sqrt{3}}{2}$, or, $a = -\frac{\sqrt{3}}{2}, b = \frac{1}{2}$.

Thus there are 4 solutions.

<u>Modulus</u>

Let $z = x + yi \in \mathbb{C}$.

The modulus of z is $|x + yi| = \sqrt{x^2 + y^2}$.

Examples

$$\begin{split} |5+6i| &= \sqrt{5^2+6^2} = \sqrt{61} \\ |5-6i| &= \sqrt{61} \\ |135| &= 135 \\ |-135| &= 135 \end{split}$$

Properties of Modulus

$$\begin{split} |z| &= 0 \text{ iff } z = 0 \\ |\overline{z}| &= |z| \\ z \cdot \overline{z} &= |z|^2 \\ |zw| &= |z||w| \\ \text{ if } z \neq 0 \text{, then } |z^{-1}| = |z|^{-1} \end{split}$$

Proof of the fourth statement above.

Let $z, w \in \mathbb{C}$.

Consider

$$|zw|^{2} = (zw)(\overline{zw})$$
$$= zw(\overline{zw})$$
$$= (z\overline{z})(w\overline{w})$$
$$= |z|^{2}|w|^{2}$$
$$= (|z||w|)^{2}$$

Since the modulus of every complex number is a non-negative real number, we get

|zw| = |z||w|

10.3 Complex Plane and Polar Form

Complex Plane

Imaginary axis is y-axis, real axis is x-axis.

 \overline{z} is the reflection of z in the real axis.

|z| is the distance from z to the origin $(\sqrt{x^2 + y^2})$

 $\boldsymbol{z} + \boldsymbol{w}$ is considered to be vector addition.

Polar Form

Standard form: 3 + 3iCartesian Coordinates: (3,3)Polar Coordinates: $(3\sqrt{2}, \frac{\pi}{4})$ Polar Form: $3\sqrt{2}cis(\frac{\pi}{4}) \downarrow$

 $3\sqrt{2}(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})) =$ Standard Form

Definition

The polar form of a complex number z is

$$z = r(\cos\theta + i\sin\theta)$$

where r = |z| and θ (an argument) is an angle measured counter-clockwise from the real axis.

Note

Polar form is not unique (add multiples of 2π).

Examples

Convert to standard form
$$cis(\frac{\pi}{2})$$

 $r = 1, |z| = 1$
 $= i$
 $2cis(\frac{3\pi}{4})$
 $r = 2, |z| = 2$
 $= -\sqrt{2} + \sqrt{2}i$

Convert from standard form

$$\begin{aligned} \frac{1}{\sqrt{2}} &- \frac{i}{\sqrt{2}} \\ (r, \theta) &= (1, (\sqrt{\frac{1}{\sqrt{2}}^2 + \frac{1}{\sqrt{2}}^2})) \\ \theta &= \frac{7\pi}{4} \\ &= cis(\frac{7\pi}{4}) \end{aligned}$$

$$\begin{split} \sqrt{6} &+ \sqrt{2}i\\ r &= \sqrt{8} = 2\sqrt{2}\\ \cos\theta &= \frac{\sqrt{6}}{2\sqrt{2}}, \sin\theta = \frac{\sqrt{2}}{2\sqrt{2}}\\ \cos\theta &= \frac{\sqrt{6}}{2\sqrt{2}}, \sin\theta = \frac{\sqrt{2}}{2\sqrt{2}}\\ &= 2\sqrt{2}cis(\frac{\pi}{6}) \end{split}$$

 $\begin{array}{l} cis(\frac{15\pi}{6}) \text{ in standard form.} \\ cis(\frac{15\pi}{6}) = cis(\frac{3\pi}{6}) = \frac{\pi}{2} = 1(0+1i) = i \\ \text{Write } -3\sqrt{2} + 3\sqrt{6}i \text{ in polar form.} \end{array}$

 $r^{2} = 72, r = 6\sqrt{2}.$ $\cos \theta = \frac{-3\sqrt{2}}{6\sqrt{2}} = -\frac{1}{2}$ $\sin \theta = \frac{3\sqrt{6}}{6\sqrt{2}} = \frac{\sqrt{3}}{2}$ Thus $\theta = \frac{2\pi}{3}$ $6\sqrt{2}cis(\frac{2\pi}{3})$ Polar Multiplication of Complex Numbers

 $z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$

10.4 De Moivre's Theorem (DMT)

For all $n \in \mathbb{Z}$ and $\theta \in \mathbb{R}$

 $(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$

Proof of Polar Multiplication in \mathbb{C} (PM \mathbb{C})

Multiply in standard form and use trig identities.

Proof of DMT

When $n \ge 0$, this is induction

When n < 0, we can translate to the previous case.

Using rules for cos(-x) and sin(-x).

DMT Examples

Write $(cis\frac{3\pi}{4})^{-100}$ in standard form.

$$= cis(\frac{-300\pi}{4}) = cis(-75\pi)$$
$$= cis(\pi)$$
$$= -1$$

Write $(\sqrt{3}-i)^{10}$ in standard form

$$(\sqrt{3} - i)^{10} = (2cis\frac{11\pi}{6})^{10}$$
$$= 2^{10}cis(\frac{55\pi}{3})$$
$$= 2^{10}cis(\frac{1}{2} + \frac{\sqrt{3}}{2}i)$$
$$= 512 + 512\sqrt{3}i$$

<u>Note</u>

Multiplying by i corresponds to rotating 90°

10.5 Complex *n*-th Roots Theorem (CNRT)

 N^{th} Root Examples Solve $z^6 = -64$ Let $z = rcis\theta$ in polar form. In polar form, $-64 = 64cis(\pi)$ Equating gives that

 $(rcis\theta)^6 = 64cis(\pi)$ $\implies r^6cis6\theta = 64cis(\pi)$

Since $r \in \mathbb{R}$ and $r \ge 0$, we get r = 2. Also $\theta = \frac{\pi + 2\pi k}{6}$ where $k \in \mathbb{Z}$. We get $2cis\frac{\pi}{6}, 2cis\frac{3\pi}{6}, 2cis\frac{5\pi}{6}, 2cis\frac{7\pi}{6}, 2cis\frac{9\pi}{6}, 2cis\frac{11\pi}{6}$ Roots of Unity Solve $z^8 = 1$ $i, \frac{-1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, -1, \frac{-1}{\sqrt{2}} - \frac{i}{\sqrt{2}}, -i, \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$

10.6 Square Roots and the Quadratic Formula

Quadratic Formula

For all $a, b, c \in \mathbb{C}, a \neq 0$, the solutions to $az^2 + bz + c = 0$ are,

$$\frac{-b\pm w}{2a} \quad \text{where } w^2 = b^2 - 4ac$$

11 Polynomials

11.1 Introduction

<u>Fields</u>

All non-zero numbers have a multiplicative inverse.

ab = 0 iff a = 0 or b = 0

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ when p is prime.

11.2 Arithmetic of Polynomials

Polynomials

No negative exponents, no fractional exponents.

 $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_o$ is a polynomial over \mathbb{F} .

when $n \ge 0 \in \mathbb{Z}, a_n, a_{n-1} \in \mathbb{F}$.

Terminology/Notation

 $iz^3 + (2+3i)z + \pi, z$ is indeterminate.

- complex polynomial (not real)
- degree is 3
- cubic polynomial
- in $\mathbb{C}[z]$
- f(x) = g(x) means corresponding coefficients are equal
- polynomial equation (if there was an equal sign). Solution to that is a root.

Degree of a Product

degf(x)g(x) = degf(x) + degg(x)

Division Algorithm for Polynomials

If $f(x), g(x) \in \mathbb{F}[x]$, then $\exists q(x), p(x) \in \mathbb{F}[z]$ such that f(x) = q(x)g(x) + r(x) where r(x) is the 0 polynomial or deg(r(x)) < deg(g(x))

If r is 0, g(x)|f(x)

Polynomial Arithmetic

Let g(z) = z + (i + 1) and $q(z) = iz^2 + 4z - (1 - i)$. Compute q(z)g(z).

Find the q and r where

 $\begin{aligned} f(z) &= i z^3 + (i+3) z^2 + (5i+3) z + (2i-2) \\ g(z) &= z + (i+1) \end{aligned}$

$$\frac{iz^{2} + 4z + (i - 1)}{z + (1 + i))iz^{3} + (i + 3)z^{2} + (5i + 3)z + (2i - 2)} - (iz^{3} + (-1 + i)z^{2})}{4z^{2} + (5i + 3)} - (4z^{2} + (4 + 4i)z)}$$

$$\frac{-(4z^{2} + (4 + 4i)z)}{2i}$$

Yields
$$q(z) = iz^2 + yz + (i - 1)$$

 $r(z) = 2i$

Check

f(z) = g(z)q(z) - r(z)

Exercise 3

Prove $(x-1) \nmid (x^2+1)$

BWOC suppose $(x-1)|(x^2+1)$ in $\mathbb{R}[x]$.

Then by DP we have

$$x^2 + 1 = (x - 1)(ax + b)$$

for some $a, b \in \mathbb{R}$ and $a \neq 0$.

If they are equal, coefficients must be the same.

Comparing coefficients:

1 = a, 0 = b - a, 1 = -b

Second and third above $\implies b - a = -2$

11.3 Roots of Complex Polynomials and the Fundamental Theorem of Algebra

Remainder Theorem (RT)

For all fields \mathbb{F} , all polynomials $f(x) \in \mathbb{F}[x]$, and all $c \in \mathbb{F}$, the remainder polynomial when f(x) is divided by x - c is the constant polynomial f(c).

 $\underline{\text{Proof}}$

Let $f(x) \in \mathbb{F}[x]$ where \mathbb{F} is a field. Let $c \in \mathbb{F}$.

By DAP,

f(x) = r(x-c)q(x) + r(x) for unique $g(x), r(x) \in \mathbb{F}[x]$ where r(x) is the zero polynomial or deg(r(x)) = 0.

Regardless, $r(x) = r_0$ for some $r_0 \in \mathbb{F}$.

Alas,
$$f(x) = (c - c)q(c) + r_0 = r_0$$

Takeaway

Finding roots corresponds to finding linear factors.

Fundamental Theorem of Algebra (FTA)

Every complex polynomial of complex degrees has a root.

Complex Polynomials of Degree n Have n Roots (CPN) Proof Discovery

Induction on n degrees.

Base Case

 $az+b, a\neq 0$

 $a(z-(-\frac{b}{a}))$

If f(z) has degree k+1

By FTA, f(z) has a root. Name it c_{k+1} .

Then
$$f(z) = g(z)(z - c_{k+1})$$

Multiplicity

The multiplicity of root c of a polynomial f(x) is the largest possible integer k such that $(x - c)^k$ is a factor of F(x).

Reducible and Irreducible Polynomial

Polynomial in F[x] of positive degree is a reducible polynomial in F[x] when it can be written as the product of 2 polynomials of positive degree.

Otherwise we say that the polynomial is irreducible in P[x].

 $x^2 + 1$ is irreducible in R[x]

BWOC suppose $x^2 + 1$ is the product of (ax + b)(cx + d) where $a, b, c, d \in \mathbb{R}$. Then compare coefficients.

Prove that $x^4 + 2x^2 + 1$ has no roots in \mathbb{R} but is reducible.

 $x^4 + 2x^2 + 1$

 $(x^2+1)(x^2+1)$

Prove factors don't have roots to prove no roots (lots of ways to show no roots)

Write $x^2 + 1$ as a product of irreducible factors in $\mathbb{C}[x]$

$$x^{2} + 1 = (x - i)(x + i)$$

Write $x^4 + 2x + 1$ as a product of irreducible factors

$$x^{4} + 2x^{2} + 1 = (x - i)^{2}(x + i)^{2}$$

Factor $ix^3 + (3-i)x^2 + (-3-2i)x - 6$ as a product of linear factors. Hint -1 is a root

$$\frac{ix^{2} + (3 - 2i)x - 6}{x + 1)ix^{3} + (3 - i)x^{2} + (-3 - 2i)x - 6} - \frac{-(ix^{3} + ix^{2})}{(3 - 2i)x^{2} + (-3 - 2i)x} - \frac{(3 - 2i)x^{2} + (3 - 2i)x}{(3 - 2i)x^{2} + (3 - 2i)x}$$

The roots of this quotient are $\frac{(-3-2i)\pm w}{2i}$ where $w^2 = (3-2i)^2 + 24i$ by QF. Let wa + bi where $a, b \in \mathbb{R}$ Then $a^2 - b^2 = 5, 2ab = 12, a = 3, b = 2$ So the roots are $\frac{(-3-2i)\pm 3+2i}{2i}$. That is $\frac{(-3-2i)+3+2i}{2i}$

$$\frac{(-3-2i)+3+2}{2i} = \frac{4i}{2i} = -2$$

and

$$\frac{(-3-2i)-3+2i}{2i} = \frac{-6}{2i} = 3i$$

Roots are -1, 2, 3

Hence the final answer is

$$i(x+1)(x-2)(x-3i)$$

Write $x^4 - 5x^3 + 16x^2 - 9x - 13$ as a product of irreducible polynomials given that 2 - 3i is a root.

11.4 Real Polynomials and Conjugate Roots Theorem

f(x), if $z \in \mathbb{C}$ and f(z) = 0, then $f(\overline{z}) = 0$. Depends on the fields.

By CJRT, 2 + 3i is also a root. Thus, (x - (2 - 3i))(x - (2 + 3i)) is a factor.

This quadratic factor equals, $x^2 - 4x + 13$

Now we use long division to yield, $x^2 - x - 1$

By QF, the roots of $x^2 - x - 1$ are $\frac{1\pm\sqrt{5}}{2}$

Therefore,

$$(x - (2 - 3i))(x - (2 + 3i))(x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2})$$
 over \mathbb{C} .

or

$$x^{2} - 4x + 13)(x - \frac{1 + \sqrt{5}}{2})(x + \frac{1 - \sqrt{5}}{2}) \in \mathbb{R}$$

or

$$(x^2 - 4x + 13)(x^2 - x - 1) \in \mathbb{Q}$$

Real Quadratic Factors

If f(c) = 0 for some $c \in \mathbb{C}$ with $Im(C) \neq 0$, \exists real quadratic irreducible polynomial g(x) and real polynomial q(x) such that f(x) = g(x)q(x)

Real Factors of Real Polynomials

Every non-constant with real coefficients can be written as a product of real linear and quadratic factors.

1229

Proof of CJRT

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$. Where $a_n, a_{n-1}, \ldots, a_0 \in \mathbb{R}$. Let $z \in \mathbb{C}$ and assume f(z) = 0Now we get,

$$f(\overline{z}) = a_n(\overline{z})^n + a_{n-1}(\overline{z})^{n-1} + \dots + a_1\overline{z} + a_0$$

= $a_n(\overline{z^n}) + a_{n-1}(\overline{z^{n-1}}) + \dots + a_1\overline{z} + a_0$ by PCJ
= $\overline{a_n}(\overline{z^n}) + \overline{a_{n-1}}(\overline{z^{n-1}}) + \overline{a_1z} + \overline{a_0}$
= $\overline{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0}$ by PCJ
= $\overline{0} = 0$