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1 Introduction to the Language of Mathematics

1.1 Sets
Sets are not ordered.

{7, π} = {π, 7}

Denote element of set by 7 ∈ {2, 7, 3}. {7} /∈ {7, 3, 2}, but {7} ∈ {{7}, 3, 2}.

{} = ∅, ∅ ≠ {∅}

∅ /∈ {7, 3}, ∅ /∈ ∅

Z→ set of integers.
N→ set of natural numbers.
Q→ set of rational numbers.
R→ set of real numbers.

1.2 Mathematical Statements and Negation
Statements are true or false.

9 + 6 = 15 is a statement

x > 2 is not a statement (Open sentence. If you knew x, it would be a statement)

10 > 7 is a statement

Open sentence ̸= statement.

Negation

P is a statement

Negation of P (¬P ) is true when P is false.

1.3 Quantifiers and Quantified Statements
1.3.1 Universal and Existential Quantifiers

x2 − x ≥ 0 is an open statement.

∀x ∈ N, x2 − x ≥ 0. This is "for all natural numbers x, x2 − x ≥ 0" We know this is true.

Changing the domain makes it false.

∀x ∈ R, x2 − x ≥ 0

When domain is empty (∀x ∈ ∅)P (x) is always true.

∀x ∈ ∅, x2 − x ≥ 0 is true. All elephants in the room have 20 legs ⌣̈

Let x ∈ R← universally quantifying the following statement.

Existential Quantifier

∃x ∈ S, P (x). This is "there exists a number x in the set S such that P (x) is true." There just has to be
one such case.

∃m ∈ Z, m−7
2m+4 = 5, m = −3. ∴ true.

Once again, domain matters.

∃x ∈ ∅, P (x) is always false.

Exercises
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64 is a perfect square ⇐⇒ ∃x ∈ Z, x2 = 64
y = x3 − 2x + 1 has no x-ints ⇐⇒ ∀x ∈ R, x3 − 2x + 1 ̸= 0

⇐⇒ ¬(∃x ∈ R, x3 − 2x + 1 = 0)
22a−4 = 8 has a rational solution ⇐⇒ ∃a ∈ Q, 2a− 4 = 3

n2 + n− 6
n + 3 is an integer as long as n is an integer ⇐⇒ ∀n ∈ Z,

n2 + n− 6
n + 3 ∈ Z

1.3.2 Negating Quantifiers

Everybody in this room was born before 2010 ← Universal

Somebody in this room was born after 2010, or on 2010 ← Existential

∀x ∈ S, P (x) is false when there is at least one x ∈ S for which P (x) is false.

¬(∀x ∈ S, P (x)) ≡ ∃x ∈ S, (¬P (x))
¬(∃x ∈ S, P (x)) ≡ ∀x ∈ S, (¬P (x))

We cannot just change all the signs since P (x) might be complicated.

∀x ∈ R, |x| < S. Negation: ∃x ∈ R, |x| ≥ S

Someone in this room was born before 1990. Everyone in this room was born after or during 1990 is the
negation.

∃x ∈ Q, x2 = S. Negation: ∀x ∈ Q, x2 ̸= S.

1.4 Nested Quantifiers
∀x ∈ R,∀y ∈ R, x3 − y3 = 1 is false for every x and every y.

∀x ∈ R,∃y ∈ R, x3 − y3 = 1 is true. ∃ is in the open statement

∃x ∈ R,∃y ∈ R, x3 − y3 = 1 is true.

∃x ∈ R,∀y ∈ R, x3 − y3 = 1 is false. If x was fixed, there is no way every y will work.

2 Logical Analysis of Mathematical Statements

2.1 Logical Operators
Statement represented by A.

A ¬A
T F
F T

Conjunction and Disjunction

A and B ≡ A ∧B is

A B A ∧B
T T T
T F F
F T F
F F F

√
2 is irrational and 3 > 2 is true.
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10 is even and 1 = 2 is true.

∀x ∈ N, (x > x− 1) ∧ (2x > x) is true.

∀x ∈ Z, (x > x− 1) ∧ (2x > x) is false.

A or B ≡ A ∨B is

A B A ∨B
T T T
T F T
F T T
F F F

5 ≤ 6 is true.

87 is a prime number of 14x = 25 has x ∈ Z is false.

16 is a perfect square or 15 is a multiple of 3 is true.

Logical Equivalence

A ≡ ¬(¬A). A is logically equivalent to not not A.

De Morgan’s Laws

¬(A ∨B) ≡ (¬A) ∧ (¬B)
¬(A ∧B) ≡ (¬A) ∨ (¬B)

A B A ∨B ¬(A ∨B) ¬A ¬B (¬A) ∧ (¬B)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Example, show

¬(A ∧ (¬B ∧ C)) ≡ ¬(A ∧ C) ∨B

¬(A ∧ (¬B ∧ C))
≡ (¬A) ∨ ¬(¬B ∧ C)
≡ (¬A) ∨ (B ∨ ¬C)
≡ (¬A) ∨ (¬C ∨B)
≡ (¬A ∨ ¬C) ∨B

≡ ¬(A ∧ C) ∨B

2.2 Implication
"If H then C", H =⇒ C

Equivalent to (¬H) ∨ C

H = hypothesis, C is conclusion

H C H =⇒ C
T T T
T F F
F T T
F F T

√
2 is irrational, 33 = 27← True.
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√
2 is irrational, 33 = 28← False.
√

2 is rational, 3 + 4 = 6← True.
√

2 is rational, 3 + 4 = 7← True.

For all real numbers x, if x > 2, x2 > 4← True.

For all real numbers x, if x ≥ 2, x2 > 4← True.

∀k ∈ Z, if k > 3, then 2k + 1 ≥ 9 is true.

∀k ∈ Z, if k > 3, then 2k + 1 ≥ 10 is false.

∀k ∈ Z, if k > 3, then 2k + 1 ≥ 8 is true.

∀x ∈ R(x ≥ 7 =⇒ x + 1
x ≥ 2)

For all x ∈ R, if x ≥ 7, then x + 1
x ≥ 2

x ∈ R ∧ x ≥ y =⇒ x + 1
x ≥ 2

x + 1
x ≥ 2 whenever x ∈ R and x ≥ 7

Negation of Implication

¬(H =⇒ C) ≡ ¬((¬H) ∨ C) ≡ (¬(¬H)) ∧ (¬C)) ≡ H ∧ (¬C)

Negation of implication is not an implication.

If 7 is a prime and 5 ≤ 6, then 24 is a perfect square (false).

7 is prime and 5 ≤ 6 and 24 is not a perfect square (true).

Negation of implication is and. Hypothesis is not always first.

Implication Examples

For all a, b, x,∈ R

1. If a < b, then a ≤ b (true)

2. If |x| = 3, then x2 = 9 (true)

2.3 Contrapositive and Converse
Contrapositive

The contrapositive of A =⇒ B is the implication ¬B =⇒ ¬A

1. If a > b, then a ≥ b (true)

2. If x2 ̸= 9, then |x| ≠ 3 (true)

Logically equivalent with A =⇒ B

Converse

The converse of A =⇒ B is the implication B =⇒ A

1. If a ≤ b, then a < b (false)

2. If x2 = 9, then |x| = 3 (true)

Not logically equivalent with A =⇒ B

6
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A B A ⇐⇒ B
T T T
T F F
F T F
F F T

2.4 If and Only If
Logical operator ⇐⇒

For all x ∈ R, |x| = 3 iff x2 = 9

True both ways.

2 + 2 = 5 iff 3 + 3 = 7 is True

3 Proving Mathematical Statements
Prove:

x4 + x2y + y2 ≥ 5x2y − 5y2

Let x, y ∈ R

0 ≤ (x2 − 2y)2

= x4 − 4x2y + 4y2

= x4 − 5x2y + x2y + 5y2 + y2

Faulty logic: Prove 7 = −7 by squaring both sides

3.1 Proving Universally Quantified Statements
Proving ∀x ∈ S, P (x)

We can consider arbitrary x ∈ S, and argue that P (x) must be true (direct proof).

Prove an identity

Prove

max{x, y} = x+y+|x−y|
2 for all x, y ∈ R

Case 1: x ≥ y. In this case max{x, y} = x. And x+y+x−y
2 = x

Case 2: x < y. In this case max{x, y} = y. And x+y+(−x+y)
2 = y

In both cases, LHS = RHS ■

Disprove Universally Quantified Statement

∀x ∈ R, (x2 − 1)2 ≥ 0

A counter example is 1 ∈ R.

Single example doesn’t prove ∀x ∈ S, P (x) is true.

Single counter example does prove ∀x ∈ S, P (x) is false.
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3.2 Prove Existentially Quantified Statements
There exists a perfect square k such that k2 − 31

2 k = 8.

Consider k = 16. Since k = 42, k is a perfect square. Also k2 − 31
2 k = 256 − 248 = 8 completing the

proof.

Disprove Existential Statement

We will prove the negation is true.

"There exists a real number x such that cos 2x + sin 2x = 3"

"For all real numbers x such that cos 2x + sin 2x ̸= 3"

x ∈ R

Since cos 2x, sin 2x ≤ 1, then

cos 2x + sin 2x ≤ 2■

For all k ∈ N, there exists x ∈ R, such that logk x5 = 1
2

Proof

Let k ∈ N. Consider x = k
1

10 . Clearly x ∈ R. Moreover, logk x5 = logk(k 1
10 )5 = logk k

1
2 = 1

2

3.3 Proving Implications
If m is an even integer, then 7m2 + 4 is an even integer.

Proof

Assume m is an even integer.

That is m = 2k for some integer k ∈ Z

We must show ∃ℓ ∈ Z, 7m2 + 4 = 2ℓ

We have 7m2 + 4 = 7(2k)2 + 4 = 2(14k2 + 2)

Since k ∈ Z, then 14k2 + 2 ∈ Z. That is, picking ℓ = 14k2 + 2 completes the proof.

For all integers k, if k5 is a perfect square, then 9k19 is a perfect square

Let k ∈ Z
Assume k2 is a prefect square
That is k5 = n2for some n ∈ Z
then 9k19 = (9k14)k5

= (9k14)n2

= (3k7)2n2

= (3k7n)2

Since k, n ∈ Z, then 3k7n ∈ Z. Thus 9k19 is a perfect square. ■

3.4 Divisibility of Integers
An integer m divides an integer n if there exists an integer k so that n = km.

We write m|n is m divides n

7|56, 7| − 56, 7|0, 0|0

7 ∤ 55, 0 ∤ 7
7

56 is a number, 7|56 is a statement.
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3.4.1 Transitivity of Divisibility

For all a, b, c ∈ Z if a|b and b|c then a|c.

Proof

Let a, b, c ∈ Z. Assume a|b and b|c then b = ak and c = bℓ for some k, ℓ ∈ Z.

Substituting gives c = (ak)ℓ = (kℓ)a

Notice that kℓ ∈ Z because k, ℓ ∈ Z. Thus a|c by the definition of divisibility.

3.4.2 Divisibility of Integer Combinations

For all a, b, c if a|b and a|c then a|(bx + cy) for all integers x, y.

e.g. a = 5, b = 10, c = 25

DIC → 5|(10x + 25y) for all x, y,∈ Z

Proof

Let a, b, c ∈ Z. Assume a|b and a|c. Then ak = b and aℓ = c for some k, ℓ ∈ Z. Now bk + cy =
akx + aℓy = a(kx + ℓy)

Since k, x, ℓ, y ∈ Z, then kx + ℓy ∈ Z.

Proposition

For all a, b, c ∈ Z if a|b or a|c, then a|bc

Note

Let P, Q, and R be statement variables

(P ∨Q) =⇒ R ≡ (P =⇒ R) ∧ (Q =⇒ R)

Proof

Let a, b, c ∈ Z

First we prove a|b =⇒ a|bc

So suppose b = ak for some k ∈ Z

Then bc = (ak)c = a(kc)

Since k, c ∈ Z, then kc ∈ Z. Hence a|bc

To complete this proof, we must show a|c =⇒ a|bc. The argument in this case is similar ■.

Another Example

For all a, b, c ∈ Z if for all x ∈ Z, a|(bx + c) then a|(b + c)

Proof

Let a, b, c ∈ Z

Assume ∀x ∈ Z, a|(bx + c)

Choosing x = 1, gives a|(b + c)

This is not choosing a number for all integers x. We are assuming the hypothesis is correct.

For all a, b, c, x ∈ Z if a|(bx + c), then a|(b + c)

This is false. Counter example

3|(2(3) + 3) and 3 ∤ (2 + 3)

TD: ∀a, b, c ∈ Z, (a|b ∧ b|c) =⇒ a|c

11|55 and 55|n, we know 11|n, by TD.
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3.5 Proof of Contrapositive
Example

For all integers x, if x2 + 4x− 2 is odd, then x is odd.

Proof

Let x ∈ Z. We will show the contrapositive is true.

Assume x is even. That is x = 2k for some integer k. Substitute to get

x2 + 4x− 2 = 4k2 + 8k − 2 = 2(2k2 + 4k − 1)

Since k is an integer, then 2k2 + 4k − 1 ∈ Z. That is x2 + 4x− 2 is even ■.

Example

If a, b ∈ R. If ab is irrational then a is irrational or b is irrational.

Proof

Let a, b ∈ R. We will use the contrapositive.

Assume a = p
q and b = r

s for some integers p, q, r, s ∈ Z where q, s ̸= 0.

Then ab = rp
qs moreover since p, q, r, s ∈ Z then rp, qs ∈ Z. Also qs ̸= 0. That is ab is rational.

Example

Let x ∈ R. If x3 + 7x2 < 9, then x < 1.1.

Proof

Let x ∈ R. Suppose x ≥ 1.1 then x3 + 7x2 ≥ (1.1)3 + 7(1.1)2 > 9.8 > 9.

We get that x3 + 7x2 ≥ 9. Therefore the contrapositive is true, proving the original statement is true as
well.

Example

Let a, b, c ∈ Z

If a|b then b ∤ c or a|c.

Proof

Let a, b, c ∈ Z.

Using "elimination", assume a|b and b|c. By TD a|c.

Why does this work?

(A =⇒ (B ∨ C)) ≡ A ∧ ¬B =⇒ C

3.6 Proof by Contradiction
A or ¬A must always be false.

A ∧ (¬A) is always false, calling it true is a contradiction.

We can prove that statement P is true by, assuming ¬P is true then based on this assumption, prove
that both Q and ¬Q are true for some statement P .

Prove that ¬(∃a, b ∈ Z, 10a + 15b = 12)

By way of contradiction (BWOC), assume that 10a + 15b = 12 for some a, b,∈ Z. Then 5(2a + 3b) = 12.
Since 2a + 3b ∈ Z, then 5|12. However we know that 5 ∤ 12. This is a contradiction, completing the
proof.

Prove
√

2 is irrational.

Assume it is rational,
√

2 ∈ Q.

10
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√
2 = a

b where a, b are integers > 0.

Assume they are not even. If they were even, a = 2c and b = 2d and thus c < a and d < b.
a
b = 2c

2d = c
d

a
b =
√

2

a2 = 2b2

2|a2, so a2 is even.

Assume its odd

a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. a must be even.

∃ an integer m such that a = 2m,

b2 = 2m2. b must be even then which is a contradiction.

∴
√

2 is irrational.

¬(A =⇒ B) ≡ (A ∧ (¬B))

Proving A =⇒ B is true by contradiction, we assume A =⇒ B is false. A is true, B is false. If we can
prove this is a contradiction, A =⇒ B is true.

∀a, b, c ∈ Z if a|(b + c) and a ∤ b, then a ∤ c.

For sake of contradiction, there exists integers a, b, c such that a|(b + c) and a ∤ b and a|c.

By DIC we have a|[(1)(b + c) + (−1)c] = a|b contradiction.

3.7 Proving If and Only If Statements
Example

Let x, y ∈ R where x, y ≥ 0. Then x = y iff x+y
2 = √xy

Proof

Let x, y ∈ R where x, y ≥ 0.

We will prove this in both directions (→)

Assume x = y, y+y
2 → y ← √yy.

(←) Assume x+y
2 = √xy

=⇒ x + y = 2√xy
=⇒ (x + y)2 = 4xy
=⇒ x2 − 2xy + y2 = 0
=⇒ (x− y)2 = 0
=⇒ x− y = 0
=⇒ x = y

4 Mathematical Induction

4.1 Notation for Summations, Products and Recurrences
Summation Notation

7∑
k=3

k2 = 32 + 42 + 52 + 62 + 72 = 135

11



1229 MATH 135: Algebra Jaiden Ratti

Product Notation
3∏

k=1
(5− k)! = 4! · 3! · 2! = 288

4.2 Proof by Induction
Statement

n∑
i=1

i(i + 1) = 1
3n(n + 1)(n + 2) ∀n ∈ N

Proof

We will proceed by induction on n.

Base Case

We consider when n = 1

Then
n∑

i=1
i(i + 1) =

1∑
i=1

i(i + 1) = 1(1 + 1) = 2

And
1
3n(n + 1)(n + 2) = 1

3(1)(2)(3) = 2

That is, the statement is true when n = 1.

Inductive Step

Let k be an arbitrary natural number.

Assume∑k
i=1 i(i + 1) = 1

3 k(k + 1)(k + 2)

Consider when n = k + 1

Then
1
3n(n + 1)(n + 2) = 1

3(k + 1)(k + 2)(k + 3)

And
n∑

i=1
i(i + 1) =

k+1∑
i=1

i(i + 1)

= (
k∑

i=1
i(i + 1)) + (

k+1∑
i=k+1

i(i + 1))

= 1
3k(k + 1)(k + 2) + (k + 1)(k + 2) by our inductive hypothesis

= 1
3k(k + 1)(k + 2) + 3

3(k + 1)(k + 2)

= 1
3(k + 1)(k + 2)(k + 3)

That is, the statement is true when n = k + 1. Therefore by POMI, the proof is complete.

POMI

Let P (n) be a statement that depends on n ∈ N. If statement 1 and 2 are true

12
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1. P (1)

2. For all k ∈ N, if P (k), then P (k + 1)

Then statement 3 is true.

3. For all n ∈ N, P (n)

P (1) =⇒ P (2) =⇒ P (3) =⇒ P (4)

POMI doesn’t have to start at 1.

Let P (n) be the open sentence

6|(2n3 + 2n2 + n)

Prove P (n) is true for all n.

Base Case P (1), 6|6✓

Assume P (k) is true

6|(2k3 + 3k2 + k)

Inductive Step 6|(2(k + 1)3 + 3(k + 1)2 + (k + 1))

2(k3 + 3k2 + 3k + 1) + 3(k2 + 2k + 1) + (k + 1)

2k3 + 3k2 + k︸ ︷︷ ︸
6 divides this

+ 6k2 + 6k + 6k + 6︸ ︷︷ ︸
6 divides this

6 divides the sum by DIC.

4.3 Binomial Coefficients(5
2
)

=⇒ 5C2 =⇒ "5 choose 2" = 5!
3!·2! = 10(

n
m

)
= n!

(n−m)!m!(
n
m

)
= 0 when m > n.

Pascals Identity

(
n

m

)
=

(
n− 1
m− 1

)
+

(
n− 1

m

)
for all positive integers n, m with m < n.

Binomial Theorem

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

BT1

(1 + x)n =
n∑

m=0

(
n

m

)
xm

BT2

(a + b)n =
n∑

m=0

(
n

m

)
an−mbm

Practice

Prove that for all integers n ≥ 0,
∑n

k=0
(

n
k

)
= 2n

Let x = 1 in BT1

(1 + 1)n =
∑n

k=0
(

n
0
)
(1)0

13
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What is the coefficient of x18 in (x2 − 2x)12

By BT2

(x2 − 2x)12 =
12∑

m=0

(
12
m

)
(x7)12−m(−2x)m

=
12∑

m=0

(
12
m

)
(−2)mx24−m

Choosing m = 6 gives the coefficient of
(

12
6

)
(−2)6

= 59136

Example

Define x1 = 4, x2 = 68 and xm = 2xm−1 + 15xm−2 for m ≥ 3

Prove that xn = 2(−3)n + 10 · 5n−1 for all n ∈ N.

Proof by Induction on n.

Base Case: True when n = 1, n = 2

Inductive Step:

Let k be an arbitrary natural number where k ≥ 2.

Let P (n) be the open sentence.

Assume P (1), P (2), P (3), . . . , P (k) are all true. Then what happens to k + 1?

Consider n = k + 1

Then

xn = xk+1 = 2xk + 15xk−1

= 2[2(−3)k + 10 · 5k−1] + 15[2(−3)k−1 + 10 · 5k−2]
= 4(−3)4 + 30(−3)k−1 + 20 · 5k−1 + 150 · 5k−2

= 4(−3)k − 10(−3)k + 4 · 5k + 6 · 5k

= −6(−3)k + 10 · 5k

= 2(−3)k+1 + 10 · 5k

Hence the proof is done by POSI. Difference between POMI and POSI is not base cases.

4.4 Principal of Strong Induction
Let P (n) be a statement that depends on n ∈ N. If

1. P (1) is true, and

2. ∀k ∈ N, [(P (1) ∧ P (2) ∧ . . . ∧ P (k)) =⇒ P (k + 1)]

Example

Prove that nm− 1 breaks are needed to break an n×m chocolate bar into individual pieces.

Proof

N = nm. We will proceed by induction on N .

Base Case

When N = 1, no breaks are needed.

Since N − 1 = 0, the statement is true for N = 1.

14
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Inductive Step

Let k ∈ N.

Suppose the statement is true when N = 1, N = 2, N = 3, . . . , N = k.

Consider N = k + 1 and the first break. We are left with 2 smaller bars. Let x and y be the number of
pieces in these smaller bars.

Then 1 ≤ x, y ≤ k. Also x + y = N . Breaking these two bars requires (x− 1) + (y − 1) = N − 2 breaks
by our IH.

For the original bar, we require

1 + N − 2 = N − 1 breaks. By POSI this completes the proof.

5 Sets

5.1 Introduction
The number of elements in a set is cardinality. Denoted by |S|.

S = {1, 2, 4, 6}.|S| = 4

|∅| = 0 but |{∅}| = 1

∅ = {} empty set but . . .

{∅} is not an empty set

5.2 Set-Builder Notation
Universal set U contains the objects we are concerned with (universe of discourse → universal set).

Notation:

{x ∈ U : P (x)} = "The set of all x in U such that P (x) is true".

Q = {x ∈ R : x = a
b for some a, b ∈ Z, b ̸= 0}

Set of positive factors of 12 {x ∈ N : n|12}

Set of even integers {x ∈ Z : x = 2k, k ∈ Z}

Set-Builder Notation Type 2

{f(x) : x ∈ U} "all objects in U of the form f(x)"

Even set of integers {2k : k ∈ Z}

Perfect squares {x2 : x ∈ R}

Multiples of 12 {12n : n ∈ Z}

Set-Builder Notation Type 3

{f(x) : x ∈ U , P (x)} or {f(x) : P (x), x ∈ U}

Set consisting of all objects of the form f(x) such that x is an element of U and P (x) is true.

Q = {a
b : a, b ∈ Z, b ̸= 0}

Integer powers of 2 : {2k : k ∈ Z, k ≥ 0}

Perfect squares larger than 50 : {x2 : x2 > 50, x ∈ Z}

Multiples of 7 : {7x : x ∈ Z}

Odd perfect squares: {x2 : x2 = 2k + 1, k ∈ Z}

15
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5.3 Set Operations
Union of 2 sets S & T, S ∪ T is the set of all elements in either

S ∪ T = {x : (x ∈ S) ∨ (x ∈ T )}

e.g. {2k : k ∈ Z} ∪ {k ∈ Z : 0 ≤ k ≤ 10} = {0, 1, 2, 3, 4, . . . , 10, 12, 14, . . .}

Intersection of 2 sets S & T, S ∩ T is the set of elements in both

S ∩ T = {x : (x ∈ S) ∧ (x ∈ T )}

Set Difference of 2 sets S & T, S − T or S \ T is the set of all elements in S but not in T .

S \ T = {x : (x ∈ S) ∨ (x /∈ T )}

The complement of a set S, S or S∁ is the set of elements in the universal set but not in S.

S = U − S = {x ∈ U : x /∈ S}

(When U = Z) Let S = {x ∈ Z : x ≥ 0}, S = {x ∈ Z : x < 0}

5.4 Subsets of a Set
Two sets are disjoint when S ∩ T = ∅.

Any set S and its complement S are disjoint.

Any set S and ∅ are disjoint.

A set S is a subset of set T if every element of S is an element of T . Denoted by: S ⊆ T . If S is not a
subset of T , that is denoted by S ⊈ T .

{2k : k ∈ Z} ⊆ Z
{2, 5, 6, 8, 10} ⊈ {2k : k ∈ Z}
∅ ⊆ S and S ⊆ S
N ⊆ Z,Z ⊆ Q,Q ⊆ R

A set S is a proper set of T if there is at least one element of T that is not in S. (S must be a subset).
S ⊊ T .

A = {2k : k ∈ Z}, B = {2k + 1 : k ∈ Z}, C = A ∪B

A ⊊ Z, B ⊊ Z

C ⊂ Z (not a proper subset since C = Z)

{1, 2, 3} ⊂ {1, 2, 3, 4} and {1, 2, 3} ⊊ {1, 2, 3, 4}

All proper subsets are subsets

If A ⊂ B ∧B ⊂ A, then B = A.

5.5 Subsets, Set Equality, and Implications
Given S and T , prove S ⊆ T

Prove the implication ∀x ∈ U , (x ∈ S) =⇒ (x ∈ T )

Example: Let S = {8m : m ∈ Z} and T = {2n : n ∈ Z}. Show that S ⊆ T .

Proof: Let x ∈ Z and assume x ∈ S. Then 8m for m ∈ Z. Then x = 2(4m). 4m ∈ Z, set n = 4m and
we can see x = 2n. Thus x ∈ T , S ⊆ T .

Let A = {n ∈ N : 4|(n− 3)} and B = {2k + 1 : k ∈ Z}. Prove A ⊆ B.

16
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Let x ∈ N since x ∈ A. Then 4|(x− 3), such that j ∈ Z

4j = x− 3
x = 4j + 3

= 4j + 2 + 1
= 2 (2j + 1)︸ ︷︷ ︸

Z

+1

since j ∈ Z, 2j + 1 ∈ Z.k = 2j + 1, x = 2k + 1, x ∈ B

Given S & T , prove S = T .

Prove S ⊆ T and T ⊆ S.

Show ∀x ∈ U , (x ∈ S) =⇒ (x ∈ T ) ∧ (x ∈ T ) =⇒ (x ∈ S) or (x ∈ S) ⇐⇒ (x ∈ T )

Let S = {1,−1, 0} and T = {x ∈ R : x3 = x}. Prove S = T

⊆ Let x ∈ S. Then x = 1,−1, 0. When x = 1, (1)3 = 1 . . .. So x ∈ S =⇒ x ∈ T

⊇ Let x ∈ T . Then x3 = x or x3 − x = 0, x(x− 1)(x + 1) = 0. x must be 0,−1, or 1 . . . x ∈ S. T ⊆ S.

Since we have shown both S ⊆ T and S ⊇ T, S = T .

Proving General Statements

Prove A ∩B ⊆ A

Proof: Let x ∈ A ∩B, then x ∈ A and x ∈ B. Thus x ∈ A ∩B =⇒ x ∈ A so A ∩B ⊆ A.

Prove that S = T if and only if S ∩ T = S ∪ T

(→) Assume S = T . Then S ⊆ T and T ⊆ S.

⊆ Let x ∈ S ∩ T . Then x ∈ S and x ∈ T so x ∈ S ∪ T

⊇ Let x ∈ S ∪ T . Then x ∈ S or x ∈ T . If x ∈ S, since S ⊆ T , then x ∈ T and vice versa.

Thus x ∈ S ∪ T, x ∈ S ∩ T .

(←) Assume S ∩ T = S ∪ T

⊆ Let x ∈ S. Then x ∈ S ∪ T =⇒ x ∈ S ∩ T so x ∈ T .

⊇ Let x ∈ T . Then x ∈ S ∪ T =⇒ x ∈ S ∩ T so x ∈ S.

We have shown it both ways so S ⊆ T and T ⊆ S, S = T .

6 The Greatest Common Divisor
Bounds by Divisibility

For all a, b ∈ Z, if b|a and a ̸= 0, then b ≤ |a|

Proof

Let a, b ∈ Z

Assume b|a and a ̸= 0

Then there exists q ∈ Z such that bq = a.

From this we get |bq| = |a|

This tells us |b||q| = |a|

Since a ̸= 0m then q ̸= 0.

Since q ∈ Z, q ̸= 0, then |q| ≥ 1

Sub into equation to get |b| ≤ |a|

17
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Since b ≤ |b|, so b ≤ |a|.

6.1 Division Algorithm
For all a ∈ Z and for all b ∈ N there exists unique integers q and r such that

a = bq + r where 0 ≤ r < b

Examples

a = 50, b = 8 50 = 8 · 6︸︷︷︸
q

+ 2︸︷︷︸
r

a = 40, b = 8 40 = 8 · 5 + 0
a = −50, b = 8 − 50 = 8 · (−7) + 6

6.2 Greatest Common Divisor (GCD)
Divisors of 84 : ±1,±2,±3,±4,±6,±7,±12,±14,±21,±28,±42,±84

Divisors of 60 : ±1,±2,±3,±4,±5,±6,±10,±12,±15,±20,±30,±60

gcd(84, 60) = 12

Formal Definition

Leta, b ∈ Z

When a and b are not both zero, we say an integer d > 0 is the greatest common divisor of a and b, and
write gcd(a, b) iff

• d|a ∧ d|b

• for all integers c, if c|a and c|b then c ≤ d

Otherwise, we say gcd(0, 0) = 0

Examples

• gcd(84, 60) = 12

• gcd(−84, 60) = 12

• gcd(84,−60) = 12

• gcd(−84,−60) = 12

• gcd(84, 0) = 84

• gcd(−84, 0) = 84

Fact

For all a, b ∈ Z, gcd(3a + b, a) = gcd(a, b)

Proof

Let a, b ∈ Z. Let d = gcd(a, b)

Case 1 a = b = 0

In this case, by definition, d = 0

Also 3a + b = 0 and a = 0 in this case, thus gcd(3a + b, a) = 0 as well.

Case 2 a ̸= 0 or b ̸= 0

Note that 3a + b ̸= 0 or a ̸= 0 in this case as well. Since d = gcd(a, b), we know d > 0 and d|a. We get
d|(3a + b) by DIC since we also know d|b.

To complete the proof we let c ∈ Z and assume c|(3a + b) and c|a

18
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All we must show is c ≤ d. Using DIC again we get

c|[(3a + b)(1) + a(−3)]

c|b

Hence by definition of gcd(a, b)c ≤ d.

GCD with Remainders (GCD w R)

For all a, b, q, r ∈ Z, if a = bq + r then gcd(a, b) = gcd(b, r)

Example 86 = 20(7)− 54

gcd(86, 20) = 2
gcd(20,−54) = 2

Alternative proof of our fact

Clearly 3a + b = 3a + b

By GCD w R, gcd(3a + b, a) = gcd(a, b)

Euclidean Algorithm (EA)

Process to compute gcd(a, b) for a, b ∈ N

84 = 60(1) + 24 gcd(84, 60)
60 = 24(2) + 12 = gcd(60, 24)
24 = 12(2) + 0 = gcd(24, 12)

gcd(12, 0) = 12

The last non-zero will be GCD since remainder is non-negative and < b.

Bigger example: Compute gcd(1239, 735)

1239 = (735)(1) + 504
735 = 504(1) + 231
504 = 231(2) + 42
231 = 42(4) + 21
42 = 21(2) + 0

=⇒ gcd(1239, 735) = 21

Back Substitution

21 = 231 + 42(−5)
= 231 + (−5)(504 + 231(−2))
= 504(−5) + 231(11)
= 504(−5) + (11)(735− 504)
= 735(11) + 504(−16)
= 735(11) + (−16)(1239− 735)
= 1239(−16) + 735(27)

6.3 Certificate of Correctness and Bézout’s Lemma
For all a, b, d ∈ Z where d ≥ 0. If d|a and d|b and there exists s, t ∈ Z such that as + bt = d then
d = gcd(a, b).

Example

d = 6, a = 30, b = 42

b ≥ 0, 6|30, 6|42
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6 = 30(3) + 42(−2)

=⇒ 6 = gcd(30, 42)

Bézout’s Lemma

For all integers a, b ∈ Z, there exists s, t ∈ Z such that as + bt = gcd(a, b)

GCD w R

a = bq + r then gcd(a, b) = gcd(b, r)

GCD CT

If d ≥ 0, d|ad|b and s, t exists as + bt = d, then d = gcd(a, b)

BL

If d = gcd(a, b), there exists x, y ∈ Z such that ax + by = d

Example

For all n ∈ Z, gcd(n, n + 1) = 1

Proof 1

Since n + 1 = n(1) + 1, GCD w R gives us

gcd(n + 1, n) = gcd(n, 1). However

gcd(n, 1) = 1 because 1 is the only positive divisor of 1

Proof 2

Since (n + 1)(1) + n(−1) = 1, 1 ≥ 0

1|n + 1 and 1|n, then gcd(n + 1, n) = 1 by GCD CT.

Proof 3

Suppose d ∈ Z, d|(n + 1) and d|n then by DIC, d|1[(n + 1)(1) + n(−1) = 1] Thus 1 is the only divisor,
that is GCD = 1.

Example

Let a, b, x, y ∈ Z, where gcd(a, b) ̸= 0. If ax + by = gcd(a, b) then gcd(x, y) = 1.

Proof

Let a, b, x, y ∈ Z. Assume gcd(a, b) ̸= 0 and ax + by = gcd(a, b)

Division gives

( a
gcd(a,b) )x + ( b

gcd(a,b) )y = 1 since gcd(a, b) ̸= 0

Since a
gcd(a,b) , b

gcd(a,b) ∈ Z

Moreover 1 ≥ 0, 1|xand1|y

Thus by GCD LT, gcd(x, y) = 1

Example

For all a, b, c ∈ Z

If gcd(a, c) = 1 then gcd(ab, c) = gcd(b, c)

Proof

Let a, b, c ∈ Z. Assume gcd(a, c) = 1. Let d = gcd(b, c)

By BL, there are integers x, y, s, t such that

ax + cy = 1 and bs + ct = d

multiply to get
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(ax + cy)(bs + ct) = d

Thus

ab(xs) + c(axt + ybs + yct) = d

Since xs, axt+ybs+yct are integers, d ≥ 0 (by definition), d|c (by definition), d|ab, we get d = gcd(ab, c)
by GCD CT.

6.4 Extended Euclidian Algorithm
Solve 56x + 35y = gcd(56, 35) for x, y ∈ Z

x y r q
1 0 56 ← 56 = 35(1) + 21

0 1 35
...

1 -1 21 1
-1 2 14 1
2 -3 7 1

0 2

Thus gcd(36, 35) = 7, x = 2, y = −3

EEA with 408 and 170

x y r q
1 0 408 ← 408 = 170(2) + 68

0 1 170
...

2 -2 68 2
-2 5 34 2

0

Solve −170x + 408y = d for x, y ∈ Z and d = gcd(−170, 408)

Order is irrelevant for gcd.

From before d = 34 and x = −5, y = −2

6.5 Further Properties of the Greatest Common Divisor
Proof of CDD GCD (Common Divisor Divides)

Let a, b, c ∈ Z. Assume c|a and c|b.

By BL, ax + by = gcd(a, b) for some x, y ∈ Z

By DIC, c|ax + by. That is c|gcd(a, b).

Definition

Let a, b ∈ Z

When gcd(a, b) = 1, we say a and b are coprime.

Coprimeness Characterization Theorem

a and b are coprime iff there exists integers s and t with as + bt = 1.

Sketch of CCT Proof

=⇒ BL

⇐= GCD CT

Exercise

Let a, b, c ∈ Z.
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If gcd(a, b, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1

a) Prove or disprove

Let a, b, c ∈ Z. Assume gcd(a, b) = 1.

By CCT, (ab)s + ct = 1 for some s, t ∈ Z

Since bs, t ∈ Z, gcd(a, c) = 1 by CCT

Since as, t ∈ Z, gcd(b, c) = 1 by CCT

b) Prove or disprove the converse

If gcd(a, c) and gcd(b, c), then gcd(ab, c) = 1

Let a, b, c ∈ Z. Assume gcd(a, c) = gcd(b, c) = 1.

By CCT, as + ct = 1 and bx + cy = 1 for some s, t, x, y ∈ Z

Multiply to yield

(as + ct)(bx + cy) = 1

After expanding and rearranging, CCT gives us gcd(a, b) = 1 because sx, asy + tbx + txy ∈ Z.

Division by GCD (DB GCD)

If gcd(a, b) = d ̸= 0 then gcd( a
d , b

d ) = 1.

Let a, b ∈ Z such that gcd(a, b) = d ̸= 0.

By BL, ax + by = d for some x, y ∈ Z.

Divide by d
a
d x + b

d y = 1, since d ̸= 0

Note d|a and b|d by definition of d, so a
d , b

d are Z. Thus ( a
d , b

d ) = 1 by CCT

Proof of Coprimeness and Divisibility (CAD)

If a, b and c are integers and c|ab and gcd(a, c) = 1, then c|b.

Proof

Let a, b, c ∈ Z.

Assume c|ab and gcd(a, c) = 1

ax + cy = 1 by CCT for some x, y ∈ Z

Multiply both sides by b to get

abx + cby = b

We know c|c and we assumed c|ab so by DIC, c|[(ab)x + (c)by] (because x, by ∈ Z).

That is, c|b

Note

∀a, b, c ∈ Z, (c|ab) =⇒ (c|a ∨ c|b) is false.

6.6 Prime Numbers
Prime Factorization

Every integer greater than 1, can be written as the product of primes.

Proof

Proceed by Strong Induction (can’t use POMI) to prove that an integer n > 1 can always be written as
a product of primes.
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Base Case

When n = 2, n by itself is a product of primes since 2 is prime.

Inductive Step

Let k be an arbitrary integer greater than 2.

Assume i can be written as the product of primes for all integers i such that 2 ≤ i ≤ k.

We will consider cases for n = k + 1

When k + 1 is prime, there is nothing to prove.

Otherwise, k + 1 is composite.

That is k + 1 = ab for some a, b ∈ Z satisfying 1 < a, b < k + 1

By our inductive hypothesis, a and b can each be written as the product of primes. Multiplying these
products gives a product of primes equal to k + 1. Hence the statement is true by POSI.

Euclid’s Theorem

There are infinitely many primes.

Proof

By way of contradiction, assume there are a finite number of primes. We will name them p1, p2, . . . , pk

for some k ∈ N.

Consider N = (p1 · p2 . . . pk) + 1

By PF, pi|N for some i ∈ {1, 2, . . . , k}

However, also pi|(p1 · p2 . . . pk) by definition.

By DIC, we get pi|N − (p1 · p2 . . . pk)

That is, p|1. This is a contradiction because 1 is the only positive divisor of 1.

Euclid’s Lemma

For all a, b ∈ Z and primes p, if p|ab, then p|a or p|b.

Proof

Let a, b ∈ Z. Let p be prime.

Assume p|ab and p ∤ a (elimination).

Since the only positive divisors of p are 1 and p, and p ∤ a, gcd(a, p) = 1.

Thus p|b by CAD.

6.7 Unique Factorization Theorem
Every natural number > 1 can be written as a product of prime factors uniquely, apart from order.

Example

Let p be prime. Prove that 13p + 1 is a perfect square iff p = 11.

If p = 11, 13(11) + 1 = 144 = 122✓

Other direction:

13p + 1 = k2

13p = (k + 1)(k − 1)

UFT → 13 = k + 1 or 13 = k − 1

k = 12✓ or k = 14 (wrong).
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6.8 Prime Factorization and the Greatest Common Divisor

If a = pα1
1 . . . pαk

k and b = pβ1
1 . . . b = pβk

k where p1, p2, . . . , pk are primes and all exponents are non-
negative.

gcd(a, b) = pγ1
1 pγ2

2 . . . where γi = min{αi, β1} for i . . . k

Examples

gcd(132 · 7100, 163 · 744)
gcd(7100110132, 744113130)
= 744 · 110 · 130

= 744

And

gcd(20000, 30000)
gcd(2554, 243154)
= 24 · 54 · 30

= 24 · 54

= 10000

7 Linear Diophantine Equations

7.1 The Existence of Solutions in Two Variables
Given a, b, c ∈ Z, find x, y ∈ Z such that ax + by = c

• Is there a solution? LDET 1

• If so, how can we find one? EEA

• And can we find all solutions? LDET 2

Examples of

1. 143x + 253y = 11

2. 143x + 253y = 155

3. 143x + 253y = 154

1) Use EEA

y x r q
1 0 253
0 1 143
1 -1 110 1
-1 2 33 1
4 -7 11 3

-13 23 3 0

Thus {(−7 + 23n, 4− 13n) : n ∈ Z}

Thus 143(−7) + 253(4) = 11, (−7, 4) is a solution.

2) There is no solution because x, y ∈ Z, 11|(143x + 253y) but 11|155 (not a multiple of 11).

3) Multiply equation in 1) by 154
11 = 14 to get:

143(−98) + 153(56) = 154

Other solutions to 1)?
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Rewrite as y = −13
23 x + 1

23

LDET 1

Let a, b ∈ Z (both not zero) and let d = gcd(a, b) the LDE ax + by = c has a solution if and only if d|c.

First, suppose there exists x, y ∈ Z such that ax + by = c.

We know d|a and d|b (by definition of gcd), so d|c by DIC.

Next we suppose d|c to prove the other direction.

By BL there exists s, t ∈ Z such that as + bt = d.

Now we also know dk = c for some integer k. Multiplying by k gives

a(bk) + b(tk) = dk = c

Since sk and tk,∈ Z, the proof is complete.

7.2 Finding All Solutions in Two Variables
LDET 2

Let gcd(a, b) = d where a ̸= 0, b ̸= 0.

If (x, y) = (x0, y0) is one solution to the LDE ax + by = c, then the complete solution is

{(x0 + b

d
n, y0 −

a

d
n) : n ∈ Z}

LDET 2 Example

We found that (x, y) = (−7, 4) was a particular solution to 143x + 253y = 11.

LDET 2 tells us the complete solution is

{(−7 + 253
11 n, 4− 143

11 n) : n ∈ Z}

= {(−7 + 23n, 4− 13n) : n ∈ Z}

Examples of some solutions are:

n = 0 (−7, 4)
n = 1 (16,−9)
n = −1 (−30, 17)

Exercise

Solve the following LDEs:

1) 28x + 35y = 60

7 ∤ 60, no solutions.

2) 343x + 259y = 658

343(−3) + 259(4) = 7
343(−3 · 94) + 259(4 · 94) = 7 · 94

343(282) + 259(376) = 658
{(−3 + 37n, 4 + 49n) : n ∈ Z}

LDET 2 Proof

Let a, b, c ∈ Z where d = gcd(a, b), a ̸= 0 and b ̸= 0.

Assume ax0 + by0 = c for some x0, y0 ∈ Z.

Define S = {(x, y) : ax + by = c and x, y ∈ Z} and T = {(x0 + b
d n, y0 − a

d n) : n ∈ Z}

Must show how S = T (S ⊆ T, T ⊆ S)
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We begin by showing T ⊆ S.

Let n ∈ Z.

We must show (x0 + b
d n, y0 − a

d n) ∈ S.

To do this we substitute into ax + by to get

a(x0 + b

d
n) + b(y0 −

a

d
n) = ax0 + by0 = c

Indeed T ⊆ S.

Now we must show S ⊆ T .

Let (x, y) ∈ S. Then ax + by = c.

We also know ax0 + by0 = c.

Equating gives ax− ax0 = −by + by0

Thus a(x− x0) = −b(y − y0)(⋆)

Since d ̸= 0, we divide and get the following.
a
d (x− x0) = −b

d (y − y0)

This tells us b
d |

a
d (x− x0)

By DBGCD, gcd( a
d , b

d ) = 1. By CAD, we know b
d |(x−x0). Thus b

d |(x−xo). Thus b
d n = x−x0 for some

n ∈ Z.

That is x = x0 + b
d n. Substitution into (⋆) yields y = y0 − a

d n. Thus (x, y) ∈ T .

Exercise

Find all x, y ∈ Z satisfying

15x− 24y = 9 0 ≤ x, y ≤ 20.

We will solve the LDE first.

Note that it is equivalent to

5x− 8y = 3

By inspection, a solution (7,4).

So by LDET 2, the complete solution is

x = −1− 8n and y = −1− 5n where n ∈ Z

We also need

−1− 8n ≥ 0 =⇒ n ≤ −1
−1− 8n ≤ 20 =⇒ n ≥ −2
−1− 5n ≥ 0 =⇒ n ≤ −1
−1− 5n ≤ 20 =⇒ n ≥ −4

Thus n = −1 or n = −2.

Thus the final answer is {(7, 4), (15, 9)}

8 Congruence and Modular Arithmetic

8.1 Congruence
−1 is congruent to 7 modulo 8.

Definition
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Let a, b ∈ Z. Let m ∈ N.

We say a is congruent to b module m when

m|(a− b).

We write

a ≡ b (mod m)

Otherwise we write a ̸≡ b (mod m).

Examples

−1 ≡ 7 (mod 8)
−1 ≡ −1 (mod 8)
−1 ≡ 15 (mod 8)
15 ≡ −1 (mod 8)
15 ≡ 7 (mod 8)

Let a, b ∈ Z. Let m ∈ N

a ≡ b (mod m)
⇐⇒ m|(a− b)
⇐⇒ ∃k ∈ Z, mk = a− b

⇐⇒ ∃k ∈ Z, a = mk + b

8.2 Elementary Properties of Congruence
Let a, b, c ∈ Z. Let m ∈ N.

Reflexive: a ≡ a (mod m)
Symmetric: a ≡ b (mod m) =⇒ b ≡ a (mod m)
Transitivity: a ≡ b (mod m) and b ≡ c (mod m) =⇒ a ≡ c (mod m)

Proof of Reflexivity:

Since a− a = 0 and m0 = 0, we have m|(a− a). That is a ≡ a (mod m).

Proof of Symmetric:

Assume a ≡ b (mod m)

This means mk = a− b for some k ∈ Z. m(−k) = b− a.

Since −k ∈ Z, m|(b− a).

That is b ≡ a (mod m).

Proof of Transitivity:

Assume a ≡ b (mod m) and b ≡ c (mod m).

m|(a− b), m|(b− c).

By DIC, m|(a− c).

That is a ≡ c (mod m).

Proposition 2

If a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), then

1. a1 + a2 ≡ b1 + b2 (mod m)

2. a1 − a2 ≡ b1 − b2 (mod m)

3. a1a2 ≡ b1b2 (mod m)
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Proof of 1.

mk = a1 − b1 mℓ = a2 − b2

a1 + a2 = (mk + b1) + (mℓ + b2)
= m (k + ℓ︸ ︷︷ ︸

∈Z

) + b1 + b2

Proof of 3.

a1a2 = (mk + b1) + (mℓ + b2)
= (b1 · b2) + m (. . .)︸︷︷︸

some integer

CAM (Generalization of Proposition 2)

For all positive integers n, for all integers a1 . . . an and b1 . . . bn, if ai ≡ bi (mod m) for all 1 ≤ i ≤ n
then

a1 + a2 + . . . + an ≡ b1 + b2 . . . + bn (mod m)
a1a2 . . . an ≡ b1b2 . . . bn (mod m)

Congruence of Power

For all positive integers n and a, b ∈ Z.

a ≡ b (mod m) =⇒ an ≡ bn (mod m).

Question: Does 7 divide 59 + 622000 − 14

Is 59 + 622000 − 14 ≡ 0 (mod 7)?

We will "reduce modulo 7"

−14 ≡ 0 (mod 7)
=⇒ 59 + 622000 − 14 ≡ 59 + 622000 + 0 (mod 7)

≡ 59 + (−1)2000 (mod 7)← by CP
≡ 59 + 1 (mod 7)
≡ (−2)9 + 1 (mod 7)
≡ (−2)3(−2)3(−2)3 + 1 (mod 7)
≡ (−1)(−1)(−1) + 1
≡ 0 (mod 7)

Congruence and Division

Examples

Let a, b, c ∈ Z. Let m ∈ N.

If ac ≡ bc (mod m) and gcd(c, m) = 1 then a ≡ b (mod m).

Examples

1)
3 ≡ 24 (mod 7)
1 ≡ 8 (mod 7)

2)
3 ≡ 27 (mod 6)
1 ̸≡ 9 (mod 6)

Exercise

28



1229 MATH 135: Algebra Jaiden Ratti

Does 72 divide 4(−66)2022 + 800

By CAR, CAM and CP:

4(−66)2022 + 800 ≡ 2(−6)22(−11)2(−66)2020 + 800
≡ 0 + 8 (mod 72)
≡ 8 (mod 72)

But 8 ̸≡ 0 (mod 72)

Thus by CER, our number is not congruent to 0 modulo 72. Thus it does not.

Proof of CD

Let a, b, c ∈ Z. Let m ∈ N.

Assume ac ≡ bc (mod m) and gcd(c, m) = 1.

Then m|(ac− bc) or equivalently m|c(a− b).

By CAD, m|(a− b). That is, a ≡ b (mod m).

8.3 Congruence and Remainders
Congruent iff Same Remainder (CISR) and Congruent to Remainder (CTR) Examples

1) What is the remainder when x = 77100(999)− 683 is divided by 4.

We will find r such that 0 ≤ r < 4 and x ≡ r (mod 4). By CTR, this will be our answer.

By CER, CAM, and CP:

x ≡ 1100(−1)− 36 · 681 (mod 4)
x ≡ −1 (mod 4)
≡ 3 (mod 4)

The answer is 3.

2) What is the last digit (units) of x = 532310 + 922

The answer will be r such that x ≡ r (mod 10) and 0 ≤ r < 10 (By (TR)).

By CER, CAM, and CP

x ≡ (52)16(32)5 + (−1)22 (mod 10)
≡ (52)8(−1)5 + 1 (mod 10)
≡ (52)4(−1) + 1
≡ −5 + 1 (mod 10)
≡ 6 (mod 10)

The answer is 6.

Proof of CISR

Let a, b ∈ Z. Let m ∈ N.

By DA,

a = mqa + ra, 0 ≤ ra < m
b = mqb + rb, 0 ≤ rb < m

Then, a− b = m(qa − qb) + (ra − rb)

where −m < ra − rb < m

Now we assume ra = rb.
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Thus, m|(a− b) by our equation for a− b. That is a ≡ b (mod m).

Next, we assume a ≡ b (mod m).

Then mk = a− b for some k ∈ Z.

Substituting and rearranging gives,

m(k − qa + qb) = ra − rb

So m|(ra − rb) since k − qa + qb ∈ Z. Thus ra − rb = 0 by our inequality for ra − rb. We get ra = rb,
completing the proof.

CTR

For all a, b with 0 ≤ b < m, a ≡ b (mod m) iff a has remainder b when divided by m.

m|(a− b) if a = mr + b

Divisibility Tests

Let n ≥ 0 be an integer. Then we can write.

n = dk10k + dk−110k−1 + . . . d110 + d0 for digits dk, dk−1, . . . , d1, d0

What about 3?

Since 10 ≡ 1 (mod 3). n ≡ dk + dk−1 + . . . + d1 + d0 (mod 3)

Thus, by CER

n ≡ 0 (mod 3) iff dk + dk−1 + . . . + d1 + d0 ≡ 0 (mod 3).

9?

10 ≡ 1 (mod 9) so we can deduce that n is divisibly by 9 iff the sum of its digits are divisible by n.

e.g. 4456217395

4 + 4 + 5 + 6 + 2 + 1 + 7 + 3 + 9 + 5 = 46. 46 is not divisible by 9, the number is not divisible by 9.

11?

8217993

8− 2 + 1− 7 + 9− 9 + 3 = 3

10 ≡ −1 (mod 11)

8.4 Linear Congruences
Let m ∈ N.

Let a, c ∈ Z where a ̸= 0.

Find all x ∈ Z such that

ax ≡ c (mod m)

• Is there a solution?

• If so can we find one?

• If so can we find them all?

Example

Solve 4x ≡ 5 (mod 8)

⇐⇒ 8|(4x− 5)
⇐⇒ 8k = 4x− 5 for some k ∈ Z
⇐⇒ 4x− 8k = 5 for some k ∈ Z
⇐⇒ 4x = 8y = 5 for some y ∈ Z

30



1229 MATH 135: Algebra Jaiden Ratti

Linear Diophantine =⇒ gcd(4, 8) = 4. 4 ∤ 5. ∴ no solution, ∴ no x−values.

5x ≡ 3 (mod 7)

Rewrite

5x + 7y = 3 =⇒ x ∈ {2 + 7n : n ∈ Z}
gcd(5, 7) = 1 1|3✓

Answer in congruence is x ≡ 2 (mod 7).

By CTR, every integer is congruent to {0, 1, 2, 3, 4, 5, 6}.

Try all of them and see which one works.

By CER, CAM, if x0 is a solution, x ≡ x0 (mod 7) are solutions.

GCD is the number of solutions in the set {0, 1, 2, . . .}

2x ≡ 4 (mod 6)
2(0) ̸≡ 4 (mod 6)

...
2(2) ≡ 4 (mod 6)

...
2(5) ≡ 4 (mod 6)

Complete solution is x ≡ 2, 5 (mod 6).

Using LDE’s we get {2 + 3n : n ∈ Z}.

Complete solution is x ≡ 2 (mod 3).

x ≡ 2, 5 (mod 6) and x ≡ 2 (mod 4) represent the exact same set of integers.

Linear Congruence Theorem (LCT)

Complete solution {x ∈ Z : x ≡ x0 (mod m
d )} equivalently,

{x ∈ Z : x ≡ x0, x0 + m

d
, x0 + 2m

d
, . . . , x0 + (d− 1)m

d
}︸ ︷︷ ︸

d number of solutions

Informally, LCT tells us there

• is one solution modulo m
d or

• d solutions modulo m

Solve 9x ≡ 6 (mod 15)

d = gcd(9, 15) = 3, 3|6✓

{x ∈ Z : x ≡ 4 (mod 5)}

8.5 Congruence Classes and Modular Arithmetic
Definition

Let m ∈ N. Let a ∈ Z.

The congruence class of a modulo m is

[a] = {x ∈ Z : x ≡ a (mod m)}
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Example

Let m = 5

The congruence class of 3 modulo 5 is:

[3] = {x ∈ Z : x ≡ 3 (mod 5)}
= {. . . ,−12,−7,−2, 3, 8, 13, 18, 23, . . .} infinite set of integers

• [3] is an infinite set

• [3] = [23] = [−7] (both subsets of each other)

• [3] is our most common representative from this set because 0 ≤ 3 ≤ 5

Operations

Let m ∈ N. Let a, b ∈ Z. We define

[a] + [b] = [a + b]
[a][b] = [ab]

Examples (m = 5)

+ [0] [1] [2] [3] [4]
[0] [0] [1] [2] [3] [4]
[1] [1] [2] [3] [4] [0]
[2] [2] [3] [4] [0] [1]
[3] [3] [4] [0] [1] [2]
[4] [4] [0] [1] [2] [3]

× [0] [1] [2] [3] [4]
[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]

Note

Addition is well-defined

[8] + [31] = [39] = [4]

[−7] + [16] = [9] = [4]

Multiplication is as well.

Definition

Let m ∈ N. The integers modulo m are

Zm = {[0], [1], [2], . . . , [m− 1]} |Zm| = m finite
= {[x] : x ∈ Z}

a ≡ b (mod m) ⇐⇒ m|(a− b) ⇐⇒ ∃k ∈ Z, a− b = km ⇐⇒ ∃k ∈ Z, a = km + b

⇐⇒ a and b have the same remainder when divided by m ⇐⇒ [a] = [b] in Zm

Let [a] = Zn where m ∈ N.

[0] is the additive identity [a] + [0] = [a]
[1] is the multiplication identity [a][1] = [a]
[−a] is the additive inverse of [a] =⇒ [a] + [−a] = [0]
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Multiplicative inverse of [a] (if exists) is an elem [b] such that [a][b] = [b][a] = [1] and we write [b] = [a]−1.

Examples

In Z12 does [5]−1 exist? Does [6]−1 exist?

[5][x] = [1]

[x] = [5] is a solution, so [5]−1 = [5]

[6][x] = [1]. Only 12 combinations, none where 6x ≡ 1 (mod 12).

Modular Arithmetic Solution

Let gcd(a, m) = d ̸= 0.

The equation [a][x] = [c] in Zn has a solution iff d|c.

If [x] = [x0] is one solution, then there are d solutions given by,

{[x0], [x0 + m

d
], [x0 + 2m

d
], . . . , [x0 + (d− 1)m

d
]}

Review

Z10, [3] = [13] = [23] = [−17]

In Z10, solve

1) [12][x] + [3] = [8]
[2][x] = [5] has no solution.

2) [15][x] + [7] = [12]
[5][x] = [5]. gcd(5, 10) = 5 =⇒ 5 solutions. 10

5 = 2, spanned by 2 ↓

[1], [3], [5], [7], [9]

3) [9][x] + [1] = [8]

[9][x] = [7]. gcd(9, 10) = 1 =⇒ 1 solution.

x = 3, 3 · 9 = 27, 27− 7 = 20.

Inverses in Zm (INV Zm)

Let a ∈ Z with 0 ≤ a ≤ m − 1. [a] ∈ Zm has a multiplicative inverse iff gcd(a, m) = 1. Multiplicative
inverse is unique.

Inverses in Zp (INV Zp)

For all prime numbers p and [a] ∈ Zp have a unique multiplicative inverse.

8.6 Fermat’s Little Theorem (FℓT)
Let p be prime. Let a ∈ Z.

If p ∤ a, then ap−1 ≡ 1 (mod p).

Examples

46 ≡ 1 (mod 7) 396 ≡ 1 (mod 7)

132 ≡ 1 (mod 7) but not by FℓT.

Exercise

What is the remainder when 792 is divided by 11?

Since 11 is prime and 11 ∤ 7, 710 ≡ 1 (mod 11).

792 ≡ (710)9 · 72 ≡ 19 · 72 ≡ 49 ≡ 5 (mod 11)

By CAM, CER, CP. Thus, the remainder is 5.
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Notes

We can write ap−1 ≡ 1 (mod p) as [ap−1] = [1] in Zp. In this case [a]−1 = [ap−2]

Idea of Proof of FℓT

Let a = 4 and p = 7.

{[4], [2 · 4], [3 · 4], [4 · 4], [5 · 4], [6 · 4]}

= {[4], [1], [5], [2], [6], [3]}

No zero, all distinct.

Corollary to FℓT

Let p be prime. Let a ∈ Z.

Then ap ≡ a (mod p)

Proof

Let p be prime. Let a ∈ Z. We will use cases.

When p ∤ a, by FℓT, ap−1 ≡ 1 (mod p). Multiplying gives ap ≡ a (mod p) by CAM.

When p|a, a ≡ 0 (mod p). Thus ap ≡ 0 (mod p) by CP. Thus ap ≡ a (mod p) by CER.

The statement is true in all cases. ■

Exercise

What is the remainder when 8(97) is divided by 11.

97 ≡ −1 (mod 10)
≡ 9 (mod 10)

897
≡ 810q+r ≡ (810)q8r ≡ 8r (mod 11)

Simultaneous Congruences Examples

Solve x ≡ 2 (mod 13), x ≡ 17 (mod 29). If moduli are coprime, always get one solution.

Rewrite the second statement as x = 17 + 29k where k ∈ Z.

Thus we want to find all k satisfying:

17 + 29j ≡ 2 (mod 13)
⇐⇒ 29k ≡ 11 (mod 13)
⇐⇒ 3k ≡ 11 (mod 13)
⇐⇒ k ≡ 8 (mod 13)
⇐⇒ k = 8 + 13ℓ for some ℓ ∈ Z

Sub to get

x = 17 + 29(8 + 13ℓ)
x = 17 + 29 · 8 + 29 · 13ℓ

x = 249 + 377ℓ

The solution is x ≡ 249 (mod 377)

8.7 Chinese Remainder Theorem
Suppose gcd(m1, m2) = 1 and a1, a2 ∈ Z

34



1229 MATH 135: Algebra Jaiden Ratti

There is a unique solution module m1m2 to the system

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

That is, once we have one solution x = x0, CRT also tells us the full solution is x ≡ x0 (mod m1m2)

Generalized CRT

If m1, m2, . . . , mk ∈ N and gcd(mi, mj) = 1 then for any integers there exists a solution to simultaneous
congruences.

n ≡ a1 (mod m1)
...

n ≡ ak (mod mk)

The complete solution is n ≡ n0 (mod m1m2 . . . mk)

Exercises

x ≡ 4 (mod 6), x ≡ 2 (mod 8).

Rewrite the second equation as x = 2 + 8k where k ∈ Z. Sub into the first equation to get

2 + 8k ≡ 4 (mod 6)
8k ≡ 2 (mod 6)
2k ≡ 2 (mod 6)

Since 1 is a solution, the full solution is k ≡ 1 (mod 3) by LCT.

Rewrite as k = 1 + 3ℓ where ℓ ∈ Z. Sub to get x = 2 + 8(1 + 3ℓ), x = 10 + 24ℓ.

Final answer is x ≡ 10 (mod 24).

8.8 Splitting the Modulus
Let m1 and m2 be coprime positive integers. For any two integers x and a,

x ≡ a (mod m1), x ≡ a (mod m2) ⇐⇒ x ≡ a (mod m1m2)

Exercise

What is the units digit of 8(97)?

Rough

8(97) ≡ r (mod 10)

r ≡ 8(97) (mod 2)

r ≡ 8(97) (mod 5)
r ≡ 0 (mod 2)

8(97) ≡ 3(97) (mod 5)
9 ≡ 1 (mod 4)

∴ 97 ≡ 1 (mod 4)
∴ 97 ≡ 4ℓ + 1 for some ℓ ∈ Z

So we get

8(97) ≡ 34k+1 ≡ (34)k · 3 ≡ 1k3 ≡ 3 (mod 5)
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To complete the problem, we solve

r ≡ 0 (mod 2)
r ≡ 3 (mod 5)
r ≡ 8 (mod 10)

8(97) ≡ r (mod 11), 810 ≡ 1 (mod 11) by FℓT

9 The RSA Public-Key Encryption Scheme
Cool history lesson about William Tutte

Message → encrypt to transmit cipher to decrypt to message

Math functions (easy to encrypt), hard to decrypt (invert) without info.

RSA Scheme

Setup (Bob)

1. Randomly choose two large, distinct primes p and q and let n = pq

2. Select arbitrary integer e such that gcd(e, (p− 1)(q − 1)) = 1 and 1 < e < (p− 1)(q − 1)

3. Solve ed ≡ 1 (mod (p− 1)(q − 1)) for an integer d where 1 < d < (p− 1)(q − 1)

4. Publish the public key (e, n)

5. Keep the private key (d, n) secret, and the primes p and q

Encryption (Alice does the following to send a message as ciphertext to Bob)

1. Obtain a copy of Bob’s public key (e, n)

2. Construct the message M , an integer such that 0 ≤M < n

3. Encrypt M as the ciphertext C, given by C ≡Me (mod n) where 0 ≤ C < n

4. Send C to Bob

Decryption (Bob does the following to decrypt)

1. Use the private key (d, n) to decrypt the ciphertext C as the received message R, given by R ≡ Cd

(mod n) where 0 ≤ R < n

2. Claim: R = M

Setup

p = 2, q = 11, n = 22

ϕ(n) = 10(1× 10)

e = 3 gcd(3, 10) = 1

3d ≡ 1 (mod 10)← ed ≡ 1 (mod ϕ(n)) where 0 < d < ϕ(n). d = 7.

Public key (e, n) =⇒ (3, 22).

Private key (d, n) =⇒ (7, 22).

Encryption

Generate message M where 0 ≤M < n

M = 8

C ≡ 83 (mod 22) 0 ≤ C < n

≡ (−2) · 8 (mod 22)
≡ 6 (mod 22)
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Decryption

R ≡ 67 (mod 22) 0 ≤ R < n

≡ (36)36 (mod 22)
≡ 143 · 6 (mod 22)
≡ 84 · 22 · 72 (mod 22)
≡ (−4) · 6 · 7 (mod 22)
≡ 8 (mod 22)

8 is the original message that Alice wanted to send.

Exercise

Let p = 11, q = 13, e = 23

• public key?

• private key?

• if M = 13 what is C?

Public key: (c, n)→ (23, 143)

Private key: solve 23d ≡ 1 (mod 10 · 12), d ≡ 47

C ≡ 1323 (mod 143)
≡ 1316134132131 (mod 143)

132 ≡ 169 ≡ 26 (mod 123)
134 ≡ 262 ≡ . . .

...

Square and multiply, then use SMT if you know p and q.

10 Complex Numbers

10.1 Standard Form
Complex Numbers

N ⊊ Z ⊊ Q ⊊ R ⊊ C

Examples

• 2 + 3i← standard form C = {x + yi : x, y ∈ R}

• 1
2 + (−

√
2)i

• 0 + 0i = 0

• 1 + 1i = 1 + i

For z = x + yi ∈ C, we call x the real part and y the imaginary part.

Re(z) and Im(z)

z = w means Re(z) = Re(w) and Im(z) = Im(w)

z = 7 + 0i = 7 =⇒ R ⊊ C =⇒ z is purely real

z = 7i =⇒ purely imaginary

Arithmetic

Addition:
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(a + bi) + (c + di) = (a + c) + (b + d)i
(2 + 3i) + (1 + 2i) = 3 + 5i

Multiplication:

(a + bi) · (c + di) = (ac− bd) + (ad + bc)i
(2 + 3i) · (5 + 4i) = ((2 · 5)− (3 · 4)) + ((2 · 4) + (3 · 5))i = −2 + 23i
(0 + 1i) · (0 + 1i) = −1 + 0i
i2 = −1

Informally we can treat elements of C as "normal" algebraic expressions where i2 = −1 and when we do
that "everything works".

0 is the additive identity in C.
−z is the additive inverse of z in C.

Subtraction

Let w, z ∈ C. We define

z − w = z + (−1 + 0i)w

1 is the multiplicative identity in C.
a−bi

a2+b2 is the unique multiplicative inverse of a + bi ̸= 0

Division

3 + 4i

1 + 2i
= (3 + 4i)(1 + 2i)−1

= (3 + 4i)(1− 2i

5 )

= (3 + 4i)(1
5 −

2
5 i)

= (3
5 + 8

5)− 2
5 i

= 11
5 −

2
5 i

Why is (1 + 2i)−1 = 1−2i
5 .

Let (1 + 2i)−1 = x + yi where x, y ∈ R
Then (1 + 2i)(x + yi) = 1 + 0i

= (x− 2y) + (y + 2x)i = 1 + 0i

x− 2y = 1
y + 2x = 0︸ ︷︷ ︸

x = 1
5 , y = −2

5︸ ︷︷ ︸
multiplicative inverse

Alternatively

3 + 4i

1 + 2i
· 1− 2i

1− 2i
= (3 + 4i)(1− 2i)

5
= 11− 2i

= 11
5 −

2
5 i

Properties of Complex Arithmetic (PCA)
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Let u, v, z ∈ C with z = x + yi

(u + v) + z = u + (v + z)
u + v = v + u

z + 0 = z where 0 = 0 + 0i

z + (−z) = 0 where − z = −x− yi

(uv)w = u(vw)
z · 1 = z where 1 = 1 + 0i

z ̸= 0 =⇒ zz−1 = 1 where z−1 = x− xi

x2 + y2

z(u + v) = zu + zv

Proof that multiplicative inverses are unique in C.

Let z ∈ C where z ̸= 0.

Suppose u · z = 1 and v · z = 1 for u, v ∈ C.

Then uz = vz

Thus

(uz)u = (vz)u
=⇒ u(zu) = v(zu) by PCA 5

u = v ■

10.2 Conjugate and Modulus
Warm-up
(1−2i)−(3+4i)

5−6i

= −2−6i
5−6i ·

5+6i
5+6i

i2022 = −1 since (i2)1011

6x3 + (1 + 3
√

2i)z2 − (11− 2
√

2i)z − 6 = 0. Let r ∈ R.

6r3 + (1 + 3
√

2i)r2 − (11− 2
√

2i)r − 6 = 0 + 0i

6r3 + r2 − 11r − 6 = 0 a
3
√

2r2 + 2
√

2r = 0 b

b =⇒ r = 0︸ ︷︷ ︸
¬✓

, r = −2
3︸ ︷︷ ︸

✓

Definition

Let z = a + bi be a complex number in standard form

The complex conjugate of z is z = a− bi

Examples

5 + 6i = 5− 6i 5− 6i = 5 + 6i

Properties of Complex Conjugate (PCJ)

Let z, w ∈ C. Then,

1. z = z

2. z + w = z + w
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3. z + z = 2Re(z); z − z = 2Im(z)i

4. zw = z · w

5. z ̸= 0 =⇒ z−1 = z−1

1− 4 can be proved by using standard form and showing LHS = RHS.

Proof of 5.

Suppose z ∈ C where z ̸= 0.

Therefore z−1 exists and zz−1 = 1 by PCA.

We get zz−1 = 1.

Thus zz−1 = 1. That is, z−1 = z−1

Exercise

Solve z2 = iz

Rough work

(a + bi)2 = i(a− bi)
a2 − b2 + 2abi = b + ia

a2 − b2 = b

2ab = a

When a = 0, b = 0, b = i.

When a ̸= 0, b = 1
2 , a =

√
3

2 , or, a = −
√

3
2 , b = 1

2 .

Thus there are 4 solutions.

Modulus

Let z = x + yi ∈ C.

The modulus of z is |x + yi| =
√

x2 + y2.

Examples

|5 + 6i| =
√

52 + 62 =
√

61
|5− 6i| =

√
61

|135| = 135
| − 135| = 135

Properties of Modulus

|z| = 0 iff z = 0
|z| = |z|
z · z = |z|2
|zw| = |z||w|
if z ̸= 0, then |z−1| = |z|−1

Proof of the fourth statement above.

Let z, w ∈ C.

Consider

|zw|2 = (zw)(zw)
= zw(zw)
= (zz)(ww)
= |z|2|w|2

= (|z||w|)2
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Since the modulus of every complex number is a non-negative real number, we get

|zw| = |z||w| ■

10.3 Complex Plane and Polar Form
Complex Plane

Imaginary axis is y−axis, real axis is x−axis.

z is the reflection of z in the real axis.

|z| is the distance from z to the origin (
√

x2 + y2)

z + w is considered to be vector addition.

Polar Form

Standard form: 3 + 3i
Cartesian Coordinates: (3, 3)
Polar Coordinates: (3

√
2, π

4 )
Polar Form: 3

√
2cis( π

4 ) ↓

3
√

2(cos( π
4 ) + i sin( π

4 )) = Standard Form

Definition

The polar form of a complex number z is

z = r(cos θ + i sin θ)

where r = |z| and θ (an argument) is an angle measured counter-clockwise from the real axis.

Note

Polar form is not unique (add multiples of 2π).

Examples

Convert to standard form cis( π
2 )

r = 1, |z| = 1
= i

2cis( 3π
4 )

r = 2, |z| = 2
= −
√

2 +
√

2i

Convert from standard form
1√
2 −

i√
2

(r, θ) = (1, (
√

1√
2

2 + 1√
2

2))
θ = 7π

4
= cis( 7π

4 )

√
6 +
√

2i
r =
√

8 = 2
√

2
cos θ =

√
6

2
√

2 , sin θ =
√

2
2

√
2

cos θ =
√

6
2

√
2 , sin θ =

√
2

2
√

2
= 2
√

2cis( π
6 )

cis( 15π
6 ) in standard form.

cis( 15π
6 ) = cis( 3π

6 ) = π
2 = 1(0 + 1i) = i

Write −3
√

2 + 3
√

6i in polar form.
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r2 = 72, r = 6
√

2.

cos θ = −3
√

2
6

√
2 = − 1

2

sin θ = 3
√

6
6

√
2 =

√
3

2

Thus θ = 2π
3

6
√

2cis( 2π
3 )

Polar Multiplication of Complex Numbers

z1z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

10.4 De Moivre’s Theorem (DMT)
For all n ∈ Z and θ ∈ R

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

Proof of Polar Multiplication in C (PMC)

Multiply in standard form and use trig identities.

Proof of DMT

When n ≥ 0, this is induction
When n < 0, we can translate to the previous case.

Using rules for cos(−x) and sin(−x).

DMT Examples

Write (cis 3π
4 )−100 in standard form.

= cis(−300π

4 ) = cis(−75π)

= cis(π)
= −1

Write (
√

3− i)10 in standard form

(
√

3− i)10 = (2cis
11π

6 )10

= 210cis(55π

3 )

= 210cis(1
2 +
√

3
2 i)

= 512 + 512
√

3i

Note

Multiplying by i corresponds to rotating 90◦

10.5 Complex n-th Roots Theorem (CNRT)
N th Root Examples

Solve z6 = −64
Let z = rcisθ in polar form.

In polar form, −64 = 64cis(π)
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Equating gives that

(rcisθ)6 = 64cis(π)
=⇒ r6cis6θ = 64cis(π)

Since r ∈ R and r ≥ 0, we get r = 2.

Also θ = π+2πk
6 where k ∈ Z.

We get 2cis π
6 , 2cis 3π

6 , 2cis 5π
6 , 2cis 7π

6 , 2cis 9π
6 , 2cis 11π

6

Roots of Unity

Solve z8 = 1

i, −1√
2 + i√

2 ,−1, −1√
2 −

i√
2 ,−i, 1√

2 −
i√
2 , 1, 1√

2 + i√
2

10.6 Square Roots and the Quadratic Formula
Quadratic Formula

For all a, b, c ∈ C, a ̸= 0, the solutions to az2 + bz + c = 0 are,

−b± w

2a
where w2 = b2 − 4ac

11 Polynomials

11.1 Introduction
Fields

All non-zero numbers have a multiplicative inverse.

ab = 0 iff a = 0 or b = 0

Q,R,C,Zp when p is prime.

11.2 Arithmetic of Polynomials
Polynomials

No negative exponents, no fractional exponents.

anxn + an−1xn−1 + . . . + a1x + ao is a polynomial over F.

when n ≥ 0 ∈ Z, an, an−1 ∈ F.

Terminology/Notation

iz3 + (2 + 3i)z + π, z is indeterminate.

• complex polynomial (not real)

• degree is 3

• cubic polynomial

• in C[z]

• f(x) = g(x) means corresponding coefficients are equal

• polynomial equation (if there was an equal sign). Solution to that is a root.
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Degree of a Product

degf(x)g(x) = degf(x) + degg(x)

Division Algorithm for Polynomials

If f(x), g(x) ∈ F[x], then ∃q(x), p(x) ∈ F[z] such that f(x) = q(x)g(x) + r(x) where r(x) is the 0
polynomial or deg(r(x)) < deg(g(x))

If r is 0, g(x)|f(x)

Polynomial Arithmetic

Let g(z) = z + (i + 1) and q(z) = iz2 + 4z − (1− i). Compute q(z)g(z).

Find the q and r where

f(z) = iz3 + (i + 3)z2 + (5i + 3)z + (2i− 2)
g(z) = z + (i + 1)

iz2 + 4z + (i− 1)
z + (1 + i)

)
iz3 + (i + 3)z2 + (5i + 3)z + (2i− 2)

− (iz3 + (−1 + i)z2)
4z2 + (5i + 3)

− (4z2 + (4 + 4i)z)
...

2i

Yields q(z) = iz2 + yz + (i− 1)
r(z) = 2i

Check

f(z) = g(z)q(z)− r(z)

Exercise 3

Prove (x− 1) ∤ (x2 + 1)

BWOC suppose (x− 1)|(x2 + 1) in R[x].

Then by DP we have

x2 + 1 = (x− 1)(ax + b)

for some a, b ∈ R and a ̸= 0.

If they are equal, coefficients must be the same.

Comparing coefficients:

1 = a, 0 = b− a, 1 = −b

Second and third above =⇒ b− a = −2

11.3 Roots of Complex Polynomials and the Fundamental Theorem of Al-
gebra

Remainder Theorem (RT)

For all fields F, all polynomials f(x) ∈ F[x], and all c ∈ F, the remainder polynomial when f(x) is divided
by x− c is the constant polynomial f(c).

Proof

Let f(x) ∈ F[x] where F is a field. Let c ∈ F.

By DAP,

f(x) = r(x−c)q(x)+r(x) for unique g(x), r(x) ∈ F[x] where r(x) is the zero polynomial or deg(r(x)) = 0.
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Regardless, r(x) = r0 for some r0 ∈ F.

Alas, f(x) = (c− c)q(c) + r0 = r0

Takeaway

Finding roots corresponds to finding linear factors.

Fundamental Theorem of Algebra (FTA)

Every complex polynomial of complex degrees has a root.

Complex Polynomials of Degree n Have n Roots (CPN) Proof Discovery

Induction on n degrees.

Base Case

az + b, a ̸= 0

a(z − (− b
a ))

If f(z) has degree k + 1

By FTA, f(z) has a root. Name it ck+1.

Then f(z) = g(z)(z − ck+1)

Multiplicity

The multiplicity of root c of a polynomial f(x) is the largest possible integer k such that (x − c)k is a
factor of F (x).

Reducible and Irreducible Polynomial

Polynomial in F [x] of positive degree is a reducible polynomial in F [x] when it can be written as the
product of 2 polynomials of positive degree.

Otherwise we say that the polynomial is irreducible in P [x].

x2 + 1 is irreducible in R[x]

BWOC suppose x2 + 1 is the product of (ax + b)(cx + d) where a, b, c, d ∈ R. Then compare coefficients.

Prove that x4 + 2x2 + 1 has no roots in R but is reducible.

x4 + 2x2 + 1

(x2 + 1)(x2 + 1)

Prove factors don’t have roots to prove no roots (lots of ways to show no roots)

Write x2 + 1 as a product of irreducible factors in C[x]

x2 + 1 = (x− i)(x + i)

Write x4 + 2x + 1 as a product of irreducible factors

x4 + 2x2 + 1 = (x− i)2(x + i)2

Factor ix3 + (3− i)x2 + (−3− 2i)x− 6 as a product of linear factors.

Hint −1 is a root
ix2 + (3− 2i)x− 6

x + 1
)

ix3 + (3− i)x2 + (−3− 2i)x− 6
− (ix3 + ix2)

(3− 2i)x2 + (−3− 2i)x
− (3− 2i)x2 + (3− 2i)x

...
0
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The roots of this quotient are (−3−2i)±w
2i where w2 = (3− 2i)2 + 24i by QF.

Let wa + bi where a, b ∈ R

Then a2 − b2 = 5, 2ab = 12, a = 3, b = 2

So the roots are (−3−2i)±3+2i
2i .

That is

(−3− 2i) + 3 + 2i

2i

= 4i

2i
= 2

and

(−3− 2i)− 3 + 2i

2i

= −6
2i

= 3i

Roots are −1, 2, 3

Hence the final answer is

i(x + 1)(x− 2)(x− 3i)

Write x4 − 5x3 + 16x2 − 9x− 13 as a product of irreducible polynomials given that 2− 3i is a root.

11.4 Real Polynomials and Conjugate Roots Theorem
f(x), if z ∈ C and f(z) = 0, then f(z) = 0. Depends on the fields.

By CJRT, 2 + 3i is also a root. Thus, (x− (2− 3i))(x− (2 + 3i)) is a factor.

This quadratic factor equals, x2 − 4x + 13

Now we use long division to yield, x2 − x− 1

By QF, the roots of x2 − x− 1 are 1±
√

5
2

Therefore,

(x− (2− 3i))(x− (2 + 3i))(x− 1 +
√

5
2 )(x− 1−

√
5

2 ) over C.

or

x2 − 4x + 13)(x− 1 +
√

5
2 )(x + 1−

√
5

2 ) ∈ R

or

(x2 − 4x + 13)(x2 − x− 1) ∈ Q

Real Quadratic Factors

If f(c) = 0 for some c ∈ C with Im(C) ̸= 0, ∃ real quadratic irreducible polynomial g(x) and real
polynomial q(x) such that f(x) = g(x)q(x)

Real Factors of Real Polynomials

Every non-constant with real coefficients can be written as a product of real linear and quadratic factors.
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Proof of CJRT

Let f(x) = anxn + an−1xn−1 + . . . + a1x + a0. Where an, an−1, . . . , a0 ∈ R.

Let z ∈ C and assume f(z) = 0

Now we get,

f(z) = an(z)n + an−1(z)n−1 + . . . + a1z + a0

= an(zn) + an−1(zn−1) + . . . + a1z + a0 by PCJ
= an(zn) + an−1(zn−1) + a1z + a0

= anzn + an−1zn−1 + . . . + a1z + a0 by PCJ
= 0 = 0 ■
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