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1 Basic Principles

1.1 Combinatorics
The study of combinatorics is the study of counting things.

1. How many possible poker hands are there?

2. How many ways can we choose a 3 topping pizza with 10 toppings?

3. How many ways can we split 8 slices of pizza between 3 people?

4. How many ways can we make change for a dollar?

Notation

A = {a1, a2, ..., an} is an n-element set.

• All terms are different

• Order of terms does not matter, {1, 2} = {2, 1}

Example

Let A be the set of primes less than 10, A = {2, 3, 5, 7}.

Let B be the set of odd numbers less than 10, B = {1, 3, 5, 7, 9}.

We denote the size of a set by |A|.

Example

From above, |A| = 4, |B| = 5.

Example

Choose a prime less than 10 and an odd number less than 10. I.e. (2, 1), (2, 3), ..., (7, 9).

For this, we use the notation of A×B = {(a, b) : a ∈ A, b ∈ B}

We have |A×B| = |A| · |B|

In this case, (A×B) = 4 · 5 = 20

Example

Choose a prime less than 10 or choose an odd number less than 10.

Choices are 1,2,3,5,7,9. This is denoted by A ∪B = {x : x ∈ A or x ∈ B} (or x is in both).

|A ∪B| = 6

Example

Choose a number less than 10 that is prime and an odd number {3, 5, 7}

We denote this by A ∩B = {x : x ∈ A and x ∈ B}

Fact |A ∪B| = |A|+ |B| − |A ∩B|

Definition Let A be a set. We define a list of A as the set of elements of A where the order matters

Example

Let A = {2, 3, 5, 7} be the set of primes less than 10.

The possible lists of A include

(2,3,5,7)(3,2,5,7)(5,2,3,7)(7,2,3,5)(2,3,7,5)(2,5,3,7)(2,5,7,3)(2,7,5,3)(2,7,3,5). . .(3,7,2,5) (5,7,3,2)(7,5,3,2)

In this case there are 24 lists of A = {2, 3, 5, 7}

Note, all elements in A will occur exactly once in each list. That is, lists are length |A|.

Question: Let A be a set with |A| = n. How many lists of A are there?
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Let pn be the number of lists of A where |A| = n. We can partition the set of lists based upon the first
element of the list.

There are n choices for this first element. Let x ∈ A be the first element of a list. The remainder of the
list will be chosen from the list of A \ {x}.

Note that |A \ {x}| = n− 1

Hence there are pn−1 choices for the last n− 1 elements of the list. As there were n choices for x, we get
pn = n · pn−1.

Note p1 = 1 (the only list from {x} is (x)).

Hence pn = n · pn−1 = n · (n− 1) · pn−2 . . . = n(n− 1) . . . (2)p1 = n!

Theorem

Let A be a set with |A| = n. Then the number of lists of A is n!

Definition

A subset of a set is a collection of elements from A without repetition. Note a subset may be empty, or
all of A. Order does not matter.

Example

Let A = {2, 3, 5, 7}. The set of all subsets includes

{}, {2}, {3}, {5}, {7}, {2, 3}, {2, 5}, {2, 7}...16

We see that for each x ∈ A a subset either contains x, or doesn’t contain x. This gives us two choices
for all x ∈ A. Either it is in the subset or it is not.

This allows us to observe that the number of subsets of A where |A| = n, is 2n.

Theorem

The number of subsets of A with |A| = n, is 2n (include or not; 2 options n times).

Definition

Let A be a set of size n. A partial list of size k is an ordered list (a1, a2, . . . , ak) with ai ∈ A and no
repeats.

Example

Let A = {2, 3, 5, 7}. Let k = 2. The partial lists of length 2 of A are

(2,3),(3,2),(2,5),(5,2)

(2,7),(7,2),(3,5),(5,3)

(3,7),(7,3),(5,7),(7,5)

Question

For every n and k, how many partial lists of length k are there of {1, 2, . . . , n}

Notice

In the previous example, there are 4 choices for the first element of the list. After we have chosen the
first element, we have only 3 choices for the second. After, we are done.

This gives us the number of partial lists is 4 · 3 = 12

In general, for |A| = n, and k ≤ n, we have

1. n choices or the first element

2. n− 1 choices or the second
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...

k. n− k − 1 choices for the kth element

this gives

Theorem

The number of partial lists of length k of {1, 2, . . . , n} is

n(n− 1)(n− 2)...(n− k + 1) = n(n− 1)(n− 2)...(n− k + 1)(n− k)...(2)(1)
(n− k)(n− k − 1)..(2)(1) = n!

(n− k)!

Example

Find all of the subsets of size 2 of {2, 3, 5, 7}

{2, 3}, {2, 5}, {2, 7}, {3, 5}, {3, 7}, {5, 7}

For every subset of length k there are k! orderings of the elements to get a partial list of length k. This
is true for every subset.

This gives us that

(# of subsets of size k of {1, 2, . . . , n}) ·k! = # of partial lists of length k of {1, 2, . . . , n}

Theorem

Let A be a set |A| = n, and k ≤ n. Then the number of subsets of subsets of size k is

n!
(n− k)!k! =

(
n

k

)
= number of partial lists

k! = number of subsets

1.2 Meaning vs Algebra
There are many examples in combinatorics where we can manipulate the algebra to get a result or
relationship.

This will tell you that something is true, but not why it is true.

We wish to find relationships between things we know how to count and things we want to count.

Example

Show
(

n
k

)
=

(
n

n−k

)
We see that

(
n
k

)
is the number of subsets of size k of {1, 2, . . . , n}.

Let S = {a1, a2, . . . , ak} be a subset of size k of {1, . . . , n}.

Notice

S′ = {1, 2, . . . , n} \ S is a subset of size n− k.

(I.e if n = 10, A = {2, 3, 5, 7} then Ac = {1, 4, 6, 8, 9, 10}).

We see every A, a subset of size k corresponds to a unique Ac, a subset of size n − k. Further every
subset of size n− k can be constructed in this way.

This tells us that the number of subsets of size k is the same as the number of subsets of size n− k.

1.3 Bijections
Definition Let A and B be sets.
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1. A map f : A → B is said to be surjective (onto) if ∀b ∈ B there exists (at least one) a ∈ A with
f(a) = b (all b’s are covered).

Example

f : {1, 2, 3, 4} → {1, 2} by f(1) = 1, f(2) = f(3) = f(4) = 2

2. A map f : A→ B is said to be injective if every a ∈ A maps to a unique b ∈ B (Sometimes called
one-to-one).

Example

f : {1, 2} → {1, 2, 3, 4} by f(1) = 2, f(2) = 4

3. A map f : A→ B is called bijective (or one-to-one & onto) if it is both surjective and injective.

Example

f : {1, 2, 3} → {2, 3, 5} by f(1) = 2, f(2) = 3, f(3) = 5

Note, bijections can be reversed.

See

f−1(2) = 1 f−1(3) = 2 f−1(5) = 3

Observation

1. If there is a surjection f : A→ B, then |A| ≥ |B|

2. If there is an injection f : A→ B, then |A| ≤ |B|

3. If there is a bijection f : A→ B, then |A| = |B|

Notation If there is a bijection f : A→ B, we say A ⇋ B.

Example

Show (
n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1

k

)
Let B(n, k) be the set of subsets of {1, . . . , n} of size k.

Notice

|B(n, k)| =
(

n

k

)
|B(n− 1, k − 1)| =

(
n− 1
k − 1

)
|B(n− 1, k − 1)| =

(
n− 1

k

)

Ex B(3, 2) = {{1, 2}, {1, 3}, {2, 3}} all subsets of size 2 of numbers from 1− 3.

Our goal is to get a bijection from B(n, k) to B(n− 1, k − 1) ∪B(n− 1, k)

Notice B(n− 1, k − 1) and B(n− 1, k) are disjoint (since they have different sizes). This gives,

|B(n− 1, k − 1) ∪B(n− 1, k)| = |B(n− 1, k − 1)|+ |B(n− 1, k)|

We will construct a map f with

f : B(n, k)→ B(n− 1, k − 1) ∪B(n− 1, k) by

f({a1, a2, . . . , ak}) = {a1, . . . , ak} \ {n}

If n /∈ {a1, a2, . . . , ak} we see f({a1, . . . , ak}) = {a1, . . . , ak} ∈ B(n− 1, k)

5
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If n ∈ {a1, a2, . . . , ak} then f({a1, . . . , ak}) is size k − 1 and uses numbers {1, . . . , n− 1}.

This gives f({a1, . . . , ak}) ∈ B(n− 1, k − 1)

Question: Is this a bijection?

Notice if n /∈ {a1, . . . , ak} this map is injective and surjective. The inverse map is f−1({a1, . . . , ak}) =
{a1, . . . , ak}.

If n ∈ {a1, . . . , ak}, say

{a1, . . . , ak} = {a1, . . . , ak−1, n} and f−1({a1, . . . , ak−1, n}) = {a1, . . . , ak−1} ∪ {n}

This gives us that f is a bijection. Hence

|B(n, k)| = |B(n− 1, k)|+ |B(n− 1, k − 1)|

=⇒
(

n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
as required.

Definition

Let n ≥ 0, and t ≥ 1. A multiset of size n with t types is a list (a1, . . . , at) where a1 + . . . + at = n

Example A person has 10 pets, (fish, cats, and dogs)

Here n = 10, t = 3. We can have the list (7, 2, 1).

We could have t = 4 types (last type being birds). Then we have (7, 2, 1, 0) fish, cats, dogs, and birds
respectively.

Theorem

The number of multisets of n with t types is (
n + t− 1

t− 1

)
Proof

We will do this by a bijective method. Let A be the set of subsets of size t− 1 of {1, . . . , n + t− 1}.

Clearly |A| =
(

n+t−1
t−1

)
Let B be our set of multisets of size n with t types.

For example, we could have n = 10, t = 4.

Consider the subject A given by

◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ •

Here there are 13 = n + t− 1 circles, of which 3 = t− 1 are erased off.

(◦ ◦ ◦ ◦ ◦ ◦ ◦)︸ ︷︷ ︸
7 fish

• (◦◦)︸︷︷︸
2 cats

• (◦)︸︷︷︸
1 dog

• ︸︷︷︸
0 birds

This (admittedly non-rigorously defined) map is a bijection from A to B.

This gives us |A| = |B|

2 Generating Series

2.1 Formal Power Series
In Math138 we considered power series/Taylor series, etc. Key difference in Math239 is we don’t care
about convergence.

What we care about are the coefficients and the information they carry.

Definition

A formal power series A(x) =
∑∞

n=0 anxn = a0 + a1x + a2x2 + . . .

6
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Note: Often the an are positive integers, and typically represent the size of some set we are interested
in.

Example: Let an be the number of lists of {1, 2, . . . , n}. In this case an = n!

We create the power series

A(x) =
∞∑

n=0
anxn =

∞∑
n=0

n!xn = 1 + x + 2x2 + 6x3

Note: This only converges at x = 0. We don’t care.

We can (and do) add and multiply formal power series in the obvious way.

Example

∞∑
n=0

anxn +
∞∑

n=0
bnxn =

∞∑
n=0

(an + bn)xn

Example

(
∞∑

n=0
anxn)(

∞∑
n=0

bnxn) = (a0 + a1x + a2x2 + . . .) · (b0 + b1x + b2x2 + . . .)

= a0bo + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2

=
∞∑

n=0
(

n∑
k=0

akbn−k)xn

Note

We often call x an indeterminate, not a variable. A variable is a placeholder that we occasionally evaluate
at. We (almost never) evaluate at x. Hence we call it an indeterminate.

We often manipulate formal power series algebraically disregarding convergences.

Example

Let A(x) =
∑∞

n=0 xn = 1 + x + x2 + . . .

Notice x ·A(x) = x + x2 + x3 + . . .

This gives A(x)− xA(x) = 1 + 0x + 0x2 + 0x3 + . . . = 1

Or equivalently,

(1− x)(A(x)) = 1

Or

A(x) = 1
1− x

← (not a formal power series)

(1− x) = 1
A(x) ← (not a formal power series)

Theorem

Let n ≥ 0 be fixed. Let ak be the number of subsets of {1, 2, . . . , n} of size k.

Show

7
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∞∑
k=0

akxk =
n∑

k=0
akxk =

∞∑
k=0

(
n

k

)
xk = (1 + x)n

Note if k > n, then ak = 0. Hence the first equality (everything after n is 0)

Second equality comes from previous work (ak =
(

n
k

)
)

Let P (n) be the set of all subsets of {1, 2, . . . , n}

Let B = set of all (b1, . . . , bn) with bi ∈ {0, 1}

Let f({c1, . . . , ck}) = (b1, . . . , bn) where bi =
{

1 if i ∈ {c1, . . . , ck}
0 if i /∈ {c1, . . . , ck}

Let n = 10

f({1, 2, 5, 7}) = ( 1︸︷︷︸
1

, 1︸︷︷︸
2

, 0, 0, 1︸︷︷︸
5

, 0, 1︸︷︷︸
7

, 0, 0, 0)

We see f−1((b1, . . . , bn)) = {i : b1 = 1} f−1((0, 1, 1, 0, 1)) = {2, 3, 5}

We have

n∑
k=0

akxk =
n∑

k=0

∑
{c1,...,ck}

xk =
n∑

k=0

∑
(b1,...,bn)

∑
bi

=k

xb1+...+bk

=
∑

(b1,...,bn)∈B

xb1+...+bn

=
∑

b1∈{0,1}b2∈{0,1}bn∈{0,1}

xb1+...+bn

=
∑

b1∈{0,1}

∑
b2∈{0,1}

. . .
∑

bn∈{0,1}

xb1+...+bn

=
∑

b1∈{0,1}

∑
b2∈{0,1}

. . .
∑

bn∈{0,1}

xb1+...+bn

=
∑

b1∈{0,1}

xb1
∑

b2∈{0,1}

xb2 . . .
∑

bn∈{0,1}

xbn

= (1 + x)(1 + x) . . . (1 + x)
= (1 + x)n

Example

Show (
m + n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)

Notice

(1 + x)m+n =
m+n∑
k=0

(
m + n

k

)
xk

Further,

8
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(1 + x)m+n = (1 + x)m(1 + x)n

= (
m∑

j=0

(
m

j

)
xj)(

n∑
i=0

(
n

i

)
xi)

This gives us

(1 + x)m+n =
m∑

j=0

n∑
i=0

(
m

j

)(
n

i

)
xj+1

=
m+n∑
k=0

∑
i+j=k

(
m

j

)(
n

i

)
xj+i

=
m+n∑
k=0

∑
i+j=k

(
m

j

)(
n

k − j

)
xk

=
m+n∑
k=0

k∑
j=0

(
m

j

)(
n

k − j

)
xk

By looking at the coefficient in front of xk we get that left hand side = right hand side.

Notation, [xk](
∑

akxk) = ak = coefficient in front of xa.

2.2 Generating Series
Let g1, g2, . . . be a sequence of numbers that we care about and encode some information.

Example

gn = # of binary strings of length n

gn = # of partial lists of length n of {1, 2, . . . , 100}

Definition

We define the generating series as

G(x) =
∑∞

n=0 gnxn

We often generate these series using a weight function.

Definition

Let A be a set. We say w is a weight function where ω : A→ N. We further require that

An = ω−1(n) = {a ∈ A : ω(a) = n} is a finite set ∀n.

Example

Let A = the set of all binary strings of any length.

I.e. A = {ϵ, 0, 1, 00, 01, 10, 11, 000, . . .}

Good choices for ω

• The length of the string (in this case |An| = 2n)

Bad choice for ω

• The number of 1’s in the string

9
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I.e. A = {1, 10, 01, 1000, 1000, . . .}

Here A1 is infinite.

Example

Let A be the set of all subsets of {1, 2, . . . , 10}

Define ω : A→ N by w({a1, . . . , ak}) = |{a1, . . . , ak}| = k

A0 = ω−1(0) = {{}}
A1 = ω−1(1) = {{1}, {2}, . . . , {10}}

...
A10 = ω−1(10) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A11 = {}, An = {} for n ≥ 11

Definition

We define the generating series for A with respect to ω as

Φω
A(x) =

∑
a∈A xω(a)

In this case,

Φω
A(x) = xω({}) + xω({1}) + xω({2}) + . . . + xω{1,2,...,10})

= x0 + x1 + . . . + x1︸ ︷︷ ︸
10 subsets of size 1

+ x2 + . . . + x2︸ ︷︷ ︸
10 subsets of size 2

+ . . . + x10

= x0 +
(

10
1

)
x +

(
10
2

)
x2 + . . . +

(
10
9

)
x9 +

(
10
10

)
x10

=
10∑

n=0
|An|xn

=
∞∑

n=0
|An|xn

=
10∑

n=0

(
10
n

)
xn

Note |An| = # of subsets of size n taken from {1, . . . , 10} =
(10

n

)
Theorem

Let A be a set and ω a weight function. Then

Φω
A(x) =

∑
a∈A

xω(a) =
∞∑

n=0
|An|xn

10
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∑
a∈A

xω(a) =
∑

a∈A0∪A1∪A2...

xω(a)

=
∞∑

n=0

∑
a∈An

xω(a)

=
∞∑

n=0

∑
a∈An

xn

=
∞∑

n=0

∑
a∈An

1

=
∞∑

n=0
xn|An|

=
∞∑

n=0
|An|xn as required.

Theorem

Let gn = # of multisets of n with t types =
(

n+t−1
t−1

)
Use generating series to show

∞∑
n=0

gnxn =
∞∑

n=0

(
n + t− 1

t− 1

)
xn = 1

(1− x)t

Question What is A and what is ω?

We want An to be all the multisets of n with t types.

That is

An = {(a1, . . . , at) : a1 + a2 + . . . + at = n}

We can define w((a1, . . . , ak)) = a1 + . . . + at

We can use

A = {(a1, . . . , at) : a1, . . . , at ∈ N}
= N× N× N× . . .× N︸ ︷︷ ︸

t times

= Nt

This gives

11
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∑ (
n + t− 1

t− 1

)
xn =

∑
a∈A

xω(a) =
∞∑

n=0
|An|xn

∑
a∈A

xω(a) =
∑

(a1,...,at)∈A

xa1+...at

=
∑

a1=0...∞a2=0...∞at=0...∞
xa1xa2 . . . xat

= (
∞∑

a1=0
xa1)(

∞∑
a2=0

xa2) . . . (
∞∑

at=0
xat)

= ( 1
1− x

)( 1
1− x

) . . . ( 1
1− x

)

= ( 1
1− x

)t

Recall from Math138 that
1

1−x = 1 + x + x2 + x3 + . . . ∀|x| ≤ 1

We don’t care about convergence.

We notice from this that

1 = (1− x)(1 + x + x2 + . . .)

Both (1− x) and (1 + x + x +2 + . . .) are formal power series.

Definition

Let A(x) and B(x) be formal power series. If A(x)B(x) = 1, then we say A(x) is an inverse of B(x) and
similarly B(x) is an inverse of A(x).

Example

Let A(x) = 1− x− x2

Find B(x) (if it exists) such that A(x)B(x) = 1

Write B(x) = b0 + b1x + b2x2 + b3x3 + . . .

This gives

A(x)B(x) = (1−x−x2)(b0 + b1x + b2x2 + . . .) = b0 + (b1− b0)x + (b2− b1− b0)x2 + (b3− b2− b1)x3 + . . .

Notice [x0]1 = 1.[x0]A(x)B(x) = b0. Hence b0 = 1

[x1]1 = coefficient in front x1 of the power series = 0.

[x1]A(x)B(x) = b1 − b0 = b1 − 1. Hence b1 = 1

Next [x2]1 = 0

[x2]A(x)B(x) = b2 − b1 − b0

Hence b2 = 2

For general n ≥ 2 we have.

[xn]1 = 0

[xn]A(x)B(x) = bn − bn−1 − bn−2

=⇒ bn = bn−1 + bn−2

Notice

b0 = 1, b1 = 1, b2 = 2, b3 = 3, b4 = 5, b5 = 8, b6 = 13, . . .

This is the Fibonacci sequence.

12
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I.e (1− x− x)(1 + x + 2x2 + 3x3 + 5x4 + 8x5 + . . .) = 1

We found the inverse.

Example

Show A(x) = x + x2 does not have an inverse.

Assume it does, say

B(x) = b0 + b1x + b2x2 + . . .

As before we will consider A(x)B(x) = 1, and match coefficients for xn for various n. I.e. consider

[xn]1 = [xn]A(x)B(x)

For n = 0, [x0]1 = 1

A(x)B(x) = b0x + (b1 + b0)x2 + (b2 + b1)x3 + . . .

For n = 0[x0]A(x)B(x) = 0

Note 1 ̸= 0, hence there are no solutions, and there is no inverse.

Theorem

Let A(x) = a0 + a1x + . . . be a formal power series. Then there exists an inverse B(x) ⇐⇒ a0 ̸= 0

Let A(x) and B(x) be formal power series. We define the composition as

A(B(x)) = a0 + a1B(x) + a2B(x)2 + . . . (assuming it exists)

Example

Let A(x) = 1 + x + x2 + . . . Let B(x) = x + x2

So

A(B(x)) = 1 + (x + x2) + (x + x2)2 + (x + x2)3 + . . .

= 1 + x + 2x2 + 3x3 + 5x4 + 8x5 + . . .

Note: This series is the same as the inverse of (1− x− x2). Why?

Example Let A(x) be as before, (1 + x + x2 + x3 + . . .) and B(x) = 1 + x

A(B(x)) = 1 + (1 + x) + (1 + x)2 + (1 + x)3 + . . .

=∞+∞x +∞x2 + . . .← Garbage

The composition is not well defined.

Theorem Let A(x) and B(x) be formal power series. B(x) = b0 + b1x + b2x2 + . . .

If b0 then A(B(x)) is well defined.

Pf

Assume b0 = 0. We can write B(x) = xC(x)

Hence A(B(x)) = A(xC(x))
= a0 + a1xC(x) + a2x2C(x)2 + . . .

Notice [xn]A(xC(x)) = [xn]
∑n

k=0 akxkC(x)k

This sum is finite, hence all coefficients are finite.

Definition

13
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We say that a power series A(x) is rational if there exists polynomials P (x) and Q(x) such that
P (x)
Q(x) = A(x) or P (x) = Q(x)A(x)

Example

Let A(x) = 1 + x + 2x2 + 3x3 + 5x4 + 8x5

Notice A(x) = 1
1−x−x2 , hence A(x) is rational.

Example

Let A(x) = 1 + 1
2 x− 1

8 x2 + 1
16 x3 − 5

128 x4 + . . . such that A(x)A(x) = 1 + x

Exercise show A(x) is not rational.

2.3 Sum Lemma
Let A and B be sets.

Let A ∩B = ∅ and S = A ∪B

Let ω be a weight function defined on S (and hence A and B)

Then

Φω
S(x) = Φω

A(x) + Φω
B(x)

Proof

Φω
S(x) =

∑
s∈S

xω(s) =
∑

s∈A∪B

xω(s)

=
∑

s∈A or s∈B

xω(s)

=
∑
s∈A

xω(s) +
∑
s∈B

xω(s)

= Φω
A(x) + Φω

B(x)

Note

Φω
A =

∞∑
n=0
|An|xb

=
∑
s∈S

xω(s)

here, An = ω−1(n) = {s ∈ S : ω(s) = n}

Example

Let A be the subsets of {1, 2, . . . , n} that contain n, and B is all the subsets from {1, . . . , n} that do not
contain n.

A ∪B = ∅

Further, S = A ∪B is all the subsets of {1, . . . , n}

Let w({c1, . . . , ck}) = |{c1, . . . , ck}| be the size of the subset.

Then Φω
S(x) =

∑
s∈S xω(s) =

∑∞
k=0 |Sk|xk

Here Sk is all subsets of {1, . . . , n} of size k.

14
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Hence, |Sk| =
(

n
k

)
This gives Φω

S(x) =
∑∞

k=0
(

n
k

)
xk =

∑n
k=0

(
n
k

)
xk

A = subsets of {1, . . . , n} that contain n.

Ak = subsets of {1, . . . , n} that contain n and are of size k.

There is a natural bijection from An to Ãk = subsets {1, . . . , n− 1} of size k − 1.

This is given by {c1, c2, . . . , ck−1, n} → {c1, . . . , ck−1}

The inverse is {c1, . . . , ck−1} → {c1, c2, . . . , ck−1, n}

This gives us

Φω
A(x) =

∞∑
k=0
|Ak|xk =

∞∑
k=0
|Ãk|xk

=
∞∑

k=0

(
n− 1
k − 1

)
xk

Bm = the subsets of size k from {1, . . . , n} that do not contain n. We can equivalently think of Bm as
the subsets of size k from {1, . . . , n− 1}.

This gives Φω
B(x) =

∑∞
k=0 |Bk|xk =

∑∞
k=0

(
n−1

k

)
xk

By the Sum Lemma, we have:

Φω
S(x) = Φω

A(x) + Φω
B(x) or

∞∑
k=0

(
n

k

)
xk =

∞∑
k=0

(
n− 1
k − 1

)
xk +

∞∑
k=0

(
n− 1

k

)
xk

Considering [xk] of both sides we get:
(

n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
2.4 Product Lemma
Theorem

Let A be a set with weight function, ω, and B be a set with weight function υ, we define:

S = A×B = {(a, b) : a ∈ A, b ∈ B}

We define a weight function on S as:

µ(s) = ω + υ(s) = ω × υ((a, b)) = ω(a) + υ(b)

Then
Φµ

S(x) = Φω×υ
A×B(x) = Φω

A(x) · Φυ
B(x)

Proof

Φσ
S(x) =

∑
s∈S

xσ(s)

=
∑

(a,b)∈A×B

xω(a)+υ(b)

=
∑
a∈A

∑
b∈B

xω(a)xυ(b)

= (
∑
a∈A

xω(a))(
∑
b∈B

xυ(b))

= Φω
A(x) · Φυ

B(x)

15
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Example

Let A = {1, 2, 3, 4, 5, 6} be the possibilities of a die. Let ω(a) = a.

So Φω
A(x) = x + x2 + x3 + x4 + x5 + x6

Let S = A×A = {(a, b) : a, b ∈ A} = {(1, 1), (1, 2), . . . , (2, 1) . . . , }

In this case:

ΦA×A(x) = ΦA(x) · ΦA(x)
= (ΦA(x))2

= (x + x2 + x3 + x4 + x5 + x6)2

= x2 + 2x3 + 3x4 + 4x5︸︷︷︸
4 ways to roll two dice such that their sum is equal to 5

+5x6 + . . .

Recall

Theorem

Let A and B be sets with weight ω and υ. We define A×B = {(a, b) : a ∈ A, b ∈ B} and ω×υ : A×B → N
by (ω × υ)((a, b)) = ω(a) + υ(b)

Then Φω×υ
A×B = Φω

A(x) · Φυ
B(x)

We can apply this theorem to higher products.

2.5 Infinite Sum Lemma
Notation

Ak = A× . . .×A︸ ︷︷ ︸
k times

= {(a1, . . . , ak) : ai ∈ A}

We similarly define

ωk = ω × . . .× ω︸ ︷︷ ︸
k times

, by

(ωk)(a1, . . . , ak) = ω(a1) + ω(a2) + . . . + ω(ak)

Define

A∗ =
∞⋃

k=0
Ak

Example

Let A = {0, 1}

A∗ = A0 ∪A1 ∪A2 ∪ . . .

= {(), (0), (1), (0, 0), (0, 1), (1, 0), (1, 1)}

We define ω∗ : A∗ → N by the property if a ∈ Ak then ω∗(a) = ωk(a)

Example

Let A = {1, 2} and ω : A→ N by ω(1) = 1, ω(2) = 2.

Then (1, 2, 2, 1, 1) ∈ A∗

w∗((1, 2, 2, 1, 1)) = w5((1, 2, 2, 1, 1)) = 7

16
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There will be situations where ω∗ is not a weight function. For example, if there exists a ∈ A with
ω(A) = 0.

Then ω∗(a) = 0, ω∗((a, a)) = 0 + 0 = 0

ω∗((a1, . . . , ak)) = 0

Hence (ω∗)−1(0) = {ϵ, (a), (a, a), (a, a, a), . . .}

Theorem

Let A be a set and ω : A→ N a weight function such that ω(a) ̸= 0,∀a ∈ A. Then,

Φω∗

A∗(x) = 1
1− Φω

A(x)
Φω∗

A∗(x) = Φω∗⋃∞
k=0

Ak (x)

=
∞∑

k=0
Φω∗

Ak (x)

=
∞∑

k=0
Φωk

Ak (x)

=
∞∑

k=0
(Φω

A(x))k

= 1
1− Φk

A

Example

Let A = {1, 2} and ω : A→ N as before with ω(1) = 1, ω(2) = 2.

A∗ = {(), (1), (1, 1), (1, 2), (2, 1), (2, 2)}

Φω
A(x) = xω(1) + xω(2) = x1 + x2

Φω∗

A∗(x) = 1
1− Φω

A(x)

= 1
1− x− x2

= 1 + x + 2x2 + 3x3 + 5x4 + . . .

We notice in this case that

[x4]Φω∗

A∗(x) = 5

These correspond to

(1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2)

These are the 5 lists in A∗ of any length using 1 and 2 that add to 4.

2.6 Compositions
Definition

A composition is a list of positive integers. (a1, . . . , ak)

The entries ai are the parts.

The length of a composition (a1, . . . , ak) is k.

The size is |(a1, . . . , ak)| = a1 + . . . + ak

17
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Examples

The compositions of 4 include

(1, 1, 1, 1), (2, 1, 1), (1, 1, 2), (1, 2, 1), (2, 2) from the last example.

The last three examples are

(1, 3), (3, 1), (4).

Let C be the set of all compositions. What is

Φsize
C (x)

We know that there are 8 compositions of size 4, for example.

Let C1 be all the compositions of length 1. C2 of length 2, etc.

Then

C1 = {(1), (2), (3), (4), . . .}

C2 = {(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), . . .}

We have Φsize
C1

= x + x2 + x3 = x
1−x

We note that C2 = C1 × C1 and in general, Ck = (C1)k

This allows us to write

Φsize
C (x) =

∞∑
k=0

Φsize
C

=
∞∑

k=0
(Φsize

C1
(x))k

= 1
1− Φsize

C1
(x)

= 1
1− x

1−x

= 1− x

1− 2x

= 1 + x2 + 2x2 + 4x3 + 8x4 + . . .

From this we conclude that the number of compositions of size k is,

{
2k−1 if k ≥ 1
1 if k = 0

Example

Let gn be the number of compositions of n into 2 or more parts using only the numbers 1, 3, or 7. Find
an expression for

∑∞
n=0 gnxn.

For example,

Weight 2→ (1, 1)

Weight 3→ (1, 1, 1)

Weight 4→ (1, 3), (3, 1), (1, 1, 1, 1)

Let A be the set {1, 3, 7}. We will only be looking at A2, A3, A4, . . .

We see ΦA(x) = x1 + x3 + x7

18
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The generating series we are interested in is

∞∑
n=2

ΦAn(x) =
∞∑

n=2
(ΦA(x))2

Note
∞∑

n=2
yn = y2

∞∑
n=0

yn = y2

1− y

This allows us to find the generating series we want as

∞∑
n=2

(ΦA(x))n = (ΦA(x))2

1− ΦA(x) = (x + x3 + x7)2

1− x− x3 − x7

Note

ΦA(x) =
∑
a∈A

x(ω(a))

=
∑

a∈{1,3,7}

xω(a)

= xω(1) + xω(3) + xω(7)

= x + x3 + x7

Example

Find the number of partitions of n, using only odd numbers, into an odd number of parts. Find the
generating series.

Examples

(1), (3), (5), (7)

(1, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 3, 3)

(1, 1, 1, 1, 1)

As before it is useful to determine the generating series into exactly 1 part.

In this case, A = {1, 3, 5, 7, . . .}

So

ΦA(x) =
∑

a odd
xω(a) =

∑
a odd

x + x3 + x5 + x7 + . . .

Note

x + x3 + x5 + x7 + . . .

= x(1 + x2 + x4 + x6 . . .)
= x(1 + (x2)1 + (x2)2) + (x2)3) + . . .)

This gives us that
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ΦA(x) = x + x3 + x5

= x(1 + (x2)1 + (x2)2 + . . .)

= x

1− x2

To find the generating series into an odd number of parts.

∑
n odd

ΦAn(x) =
∑

n odd
(ΦA(x))n

= ΦA(x)
1− ΦA(x)2 =

x
1−x2

1− ( x
1−x2 )2 = x− x3

1− 3x4 + x4

= x + 2x3 + 5x5 + 13x7 + 34x9 + . . .

This last step is just to double check you didn’t make a mistake. If any coefficients are negative, you
made a mistake. If any of the small coefficients do not match up with an exhaustive set, you made a
mistake.

From the series there should be 5 compositions of 5 into an odd number of odd parts.

(1, 1, 1, 1, 1)

(1, 1, 3), (1, 3, 1), (3, 1, 1)

(5)

3 Binary Strings
Define

A binary string is of the form a1, a2, . . . , an where ai ∈ {0, 1}

(000, 10110, 100000001, . . .)

The length of a1 . . . an is n. We often use this as our weight function.

We use ϵ to represent the empty string. (i.e. the string of length 0).

If A = {0, 1} is the binary strings of length 1, we use A2 = {00, 01, 10, 11}

(This is the same as {(0, 0), (0, 1), (1, 0), (1, 1)} from before but is easier to write).

As before

{0, 1}∗ =
⋃∞

k=0{0, 1}k = set of all binary strings including ϵ.

Example Let B be the set of all binary strings. Then

Φlength
B (x) = Φlength

{0,1}∗(x)

=
∞∑

k=0
Φ{0,1}k (x)

=
∞∑

k=0
(Φ{0,1}(x))k

Here,

Φlength
{0,1} (x) = xlength(0) + xlength(1) = x + x = 2x
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This gives,

Φlength
B (x) = 1

1− 2x
= 1 + 2x + 4x2 + 8x3 + 16x4 + . . .

3.1 Regular Expressions & Rational Languages
Definition

(Note: This is also discussed in CS360, CS365)

ϵ, 0, 1 are all regular expressions.

If R and S are regular expressions, then so is R ⌣ S. This can be read as "or".

If R and S are regular expressions, then so is RS.

Example

0, 1 are regular expressions. Hence 00 is a regular expression as is 10. Hence so is 00 ⌣ 11. This
represents the binary strings {00, 10}.

Hence so is (00 ⌣ 10)(00 ⌣ 10)

This gives {0000, 0010, 1000, 1010} as the words represented.

If R is a regular expression, so is Rk for k ≥ 0. This is Rk = RR . . . R︸ ︷︷ ︸
k times

If R is a regular expression, so is R∗

Here R∗ = ϵ ⌣ R1 ⌣ R2 ⌣ R3 ⌣ R4 ⌣ . . .︸ ︷︷ ︸
forever

Recall

Definition

Let R and S be regular expressions.

• ϵ, 0, 1 are regular expressions

• R ⌣ S is a regular expression

• RS is a regular expression

• Rk = RR . . . R︸ ︷︷ ︸
k

is a regular expression

• R∗ = ϵ ⌣ R ⌣ R2 . . . is a regular expression

Example Consider (0(00 ⌣ 11)2)∗

This is a regular expression, but what does it mean?

We see ϵ is a word described by this regular expression

0.00.00, 0.00.11, 0.11.00, 0.11.11 are all words given by the regular expression 0(00 ⌣ 11)2, and hence
given by this regular expression

Notice

0(00 ⌣ 11)2 = 0(00 ⌣ 11)(00 ⌣ 11)

We also have 16 words of length 10 given by this expression. This comes from (0(00 ⌣ 11)2)2

Note (0(00 ⌣ 11)2)2 = 0(00 ⌣ 11)20(00 ⌣ 11)2 = 0(00 ⌣ 11)(00 ⌣ 11)0(00 ⌣ 11)(00 ⌣ 11)

This includes

0.00.00.0.00.00
0.00.11.0.11.11
0.11.00.0.11.0.0 etc.
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There are 13 more that are not listed.

Often for regular expressions, we wish to count the number of binary strings represented by this expression
of a particular length.

In this case there is one word of length 0, (namely ϵ)

There are 4 words of length 5

There are 42 words of length 10

In this case we can create a generating series
∑

anxn where an = # of binary strings of length n given
by the regular expression.

We have in this case that

∞∑
n=0

= 1 + 4x5 + 16x10 = 43x15 + . . .

= 1 + 4x5 + (4x5)2 + (4x5)3

= 1
1− 4x5

Definition

Let R and S be sets of binary strings. We denote RS = {αβ : α ∈ R, β ∈ S}

Example

R = {0, 00, 000, 0000, . . .} = all non-empty binary strings with only 0

S = {1, 11, 111}

RS = {01, 011, 0111, 001, 0011, 0011, . . .}

SR = {10, 110, 1110, 100, 1100, 11100, . . .}

RR = {00, 000, 0000, . . .} = R \ {0}

SS = {11, 111, 1111, 11111, 111111}

Definition

Let R be a regular expression representing the words R.

Let S be a regular expression representing the binary strings S.

The ϵ, 0, 1 are regular expressions representing the set {ϵ}, {0}, {1} respectively.

Then R ⌣ S is a regular expression representing the strings R∪ S.

Then RS is a regular expression representing the strings RS.

Then Rk = R...R︸ ︷︷ ︸
k

is a regular expression representing the languageR . . .R︸ ︷︷ ︸
k

= {α1, . . . , αk : αi ∈ R} = Rk

R∗ = ϵ ⌣ R ⌣ R2 ⌣ R3 ⌣ . . . is a regular expression for the set of strings R∗ = {ϵ}∪R∪R2∪R3∪. . . =⋃∞
k=0Rk

Definition

Let R be a regular expression. Then R, the set of binary strings represented by R is called a rational
language (or a regular language).

Note

Not all subsets of binary strings are rational languages. For example, {0n, 1n}∞
n=0 = {ϵ, 01, 0011, 000111, . . .}

is not a rational language.

Example
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{0p}p-prime = {00, 000, 00000, . . .} is not a rational language.

Example

Any finite set R is a rational language.

3.2 Ambiguous vs Unambiguous
Consider the two regular expressions.

(1 ⌣ 11)∗ and 1∗. These both give the rational language {ϵ, 1, 11, 111, 1111, . . .}

We see that (1 ⌣ 11)∗ represents 111 in three different ways. We have

1.1.1 or 1.11, 11.1

We see 1∗ has only one way to do this. Namely 1.1.1.

Ambiguous & Unambiguous Expressions

Definition

We say a regular expression is unambiguous if every string in the rational language is uniquely given by
a unique representation. We say a regular expression is ambiguous if it is not ambiguous. Equivalently,
there is at least one word in the language with at least two representations.

Example

(1 ⌣ 0)(00 ⌣ 0)

This is ambiguous. Notice

00 = 0.0 = ϵ.00

Example

1∗(00 ⌣ 0)

We see that a word starts with some number of 1s, that is described uniquely by 1∗, and ends with 0 or
00, which again is unique.

This example is unambiguous.

Lemma

Let R and S be regular expressions which are unambiguous.

Let their rational languages be R and S

Then ϵ, 0, 1 are all unambiguous

The regular expression R ∪ S is unambiguous if and only if R∩ S = ∅

The regular expression RS is unambiguous if and only if there is a bijection from RS to R× S

I.e. for every α ∈ RS, there is a unique r ∈ R and s ∈ S such that α = rs

R∗ is unambiguous if and only if Rk is unambiguous for all k and Rk ∩Rn = ∅ for all k ̸= n

Example

(ϵ ⌣ 0)(0 ⌣ 00)

Notice (ϵ ⌣ 0) is unambiguous as {ϵ} ∩ {0} = ∅. This has language {ϵ, 0}

Similarly, 0 ⌣ 00 is an unambiguous expression for {0, 00}

Consider (ϵ ⌣ 0)(0 ⌣ 00)

{ϵ, 0}{0, 00} = {ϵ.0, ϵ.00, 0.0, 0.00} = {0, 00, 000}

{ϵ, 0} × {0, 00} = {(ϵ, 0), (ϵ, 00), (0, 0), (0, 00)}

In this case {ϵ, 0}{0, 00} is size 3 and {ϵ, 0} × {0, 00} is size 4.
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Hence there does not exist a bijection, and (ϵ ⌣ 0)(0 ⌣ 00) is ambiguous.

Theorem

Let R and S be unambiguous expressions with languages R and S and generating series ΦR, ΦS (with
weight function = length of binary string).

ϵ, 0, 1 are unambiguous regular expressions with languages {ϵ}, {0}, {1}, and generating series Φ{ϵ}(x) =
xlength(ϵ) = x0 = 1

Φ{0}(x) = xlength(0) = x1 = x.Φ{1}(x) = xlength(1) = x1 = x

Sum Lemma

Assume R ⌣ S is unambiguous, and is associated to the language R∪ S. Further

ΦR∪S(x) = ΦR(x) + ΦS(x)

Product Lemma

Assume RS is an unambiguous expression for RS (which has a bijection to R× S). Further

ΦRS(x) = ΦR×S(x) = ΦR(x) · ΦS(x)

String Lemma

Assume R∗ is unambiguous with language R∗. Then

ΦR∗(x) = 1
1− ΦR(x)

Example

The regular expression 0∗(100∗)∗(ϵ ⌣ 1) is unambiguous.

Let S be the language represented by this expression. Find ΦS(x)

0 has generating series Φ{0}(x) = x

0∗ has generating series Φ{0}∗(x) = 1
1−Φ{0}(x) = 1

1−x

Next

Φ{10}{0}∗(x) = Φ{1}(x) · Φ{0}(x) · Φ{0}∗(x)

= x · x · ( 1
1− x

)

= x2

1− x

This gives the generating series associated to (100∗)∗ as

1
1− Φ{10}{0}∗(x) = 1

1− x2

1−x

Lastly Φ{ϵ,1}(x) = Φ{ϵ}(x) + Φ{1}(x) = 1 + x

Hence
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ΦS(x) = 1
1− x

· 1
1− x2

1−x

· (1 + x)

= 1 + x

1− x− x2

Note

We can do this on ambiguous expressions, but the coefficients can include over-counts and be too high.

3.3 Block & Prefix Decomposition
We see that having an unambiguous regular expression allows us to construct a generating series for the
language with respect to the length.

One way to do this is to decompose the strings in an unambiguous way, and construct the regular
expression for this.

Block Decomposition

We will decompose a string into alternating "blocks" of 0’s and 1’s.

Example

11010001110101

11.0.1.000.111.0.1.0.1

A non-empty block of 0’s can be represented by 00∗. A non-empty block of 1’s can be represented by
11∗.

If we alternate these, we could have, for example,

00∗11∗00∗11∗00∗

We can represent all binary strings by the unambiguous block decompositions

1∗(00∗11∗)∗0∗

or

0∗(11∗00∗)∗1∗

Example

Find a regular expression (unambiguous) where all blocks of 0 even length can be represented.

Notice a non-empty block of 0’s of even length can be represented by

00(00)∗. If we also wanted to allow an empty block, we can use (00)∗

Binary Strings 1∗(00∗11∗)∗0∗

New Set 1∗( 00(00)∗︸ ︷︷ ︸
even length, non-empty

11∗)∗ (00)∗︸ ︷︷ ︸
even length, possibly empty

Example

All blocks are odd length

Blocks of 1’s, possibly empty, of odd length

ϵ ⌣ 1(11)∗

Blocks of 0’s, non-empty, odd length

0(00)∗

Blocks of 1’s, non-empty, odd length

1(11)∗
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Block of 0’s, possibly empty, odd length

(ϵ ⌣ 0(00)∗

All binary strings

1∗(00∗11∗)∗0∗

(ϵ ⌣ 1(11)∗)(0(00)∗1(11)∗)∗(ϵ ⌣ 0(00)∗)

New expression

Another common type of decomposition is called prefix decomposition.

Prefix Decomposition

The idea is every part starts with 1 and every 1 starts a part.

Example

00110001001101

00.1.1000.100.1.10.1

Every part looks like 10∗. We need to allow the word to start with some number of 0’s.

This gives us a decomposition of 0∗(10∗)∗

(Note, we could decompose based on 0’s, or based on suffixes).

Example

Find an unambiguous regular expression where every 1 is followed by at least two 0’s.

Here 10∗ is a 1 followed by any number of 0’s. We can modify this to give 1000∗, where every 1 is
followed by at least two 0’s.

All binary strings 0∗(10∗)∗

New expression 0∗(1000∗)∗

Aside

There are multiple ways to represent all binary strings. The easiest, but least useful is (0 ⌣ 1)∗.

Example

We have an unambiguous regular expression for all words where 1 is followed by at least two 0’s. Let
this language by R. Find ΦR(x).

Here the regular expression is 0∗(1000∗)∗

Notice the generating series for the part coming from 0∗ is 1
1−x

The generating series corresponding to 1000∗ is x3

1−x .

Putting this together gives ( 1
1−x )( 1

1− x3
1−x

)

This can be simplified to the form polynomial
polynomial .

3.4 Recursive Decomposition
Recursive Decomposition

Another way we can describe a language is recursively. It is possible that such a language is not a rational
language. Despite this, we can often still use this decomposition to say something meaningful about the
language via generating series.

We need this decomposition to be unambiguous for this to work.

Example
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Let S be the set of binary strings where all blocks of 1’s are even, and all blocks of 0’s are of length
divisible by 3.

For any word in S, either it is ϵ, or it starts with 0, or it starts with 1. As all blocks of 0 have length
divisible by 3, if it starts with 0, then it has to start with 000. Similarly, if it starts with 1, it in fact
starts with 11.

Here if S is the "regular expression", then we have

S = (ϵ ⌣ 11S ⌣ 000S)

This allows us to say something about the generating series.

ΦS(x) = Φ{ϵ}(x) + Φ{11}(x)Φ{S}(x) + Φ{000}(x) + Φ{S}(x)
= 1 + x2 · ΦS(x) + x3 · ΦS(x)
=⇒ ΦS(x)− x2ΦS(x)− x3ΦS(x) = 1

Hence

ΦS(x)(1− x2 − x3) = 1 or

ΦS(x) = 1
1− x2 − x3

Note

This language is in fact rational, and has block decomposition

(11)∗(000(000)∗(11)(11)∗)∗(000)∗

Example

Let R = {0n1n}∞
n=0 = {ϵ, 01, 0011, 000111, . . .}

We see R is either empty, ϵ, or it starts with a 0 and ends with a 1, and the middle part (after removing
the first and last term) is in R.

This gives us R = 0R1 ⌣ ϵ

Hence the generating series looks like

ΦR(x) = Φ{ϵ}(x) + Φ{0}(x)Φ{R}(x)Φ{1}(x)
=⇒ ΦR(x) = 1 + xΦR(x)x
=⇒ ΦR(x)(1− x2) = 1

=⇒ ΦR(x) = 1
1− x2 = 1 + x2 + x4 + x6 + . . .

Example

Let R be the language that does not contain 001. It is useful to define S as the language that contains
001 exactly once, at the very end. Let R and S be their expressions.

Notice R∩ S = ∅

Consider R ∪ S.

This is either ϵ, or ends in 0, or ends in 1.

If it ends in 0, and we remove the final 0, then it will still not contain 001 (i.e. it is in R)

If it ends in 1, and we remove the final 1, then it will not contain 001 and hence is in R.
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This gives R ⌣ S = ϵ ⌣ R0 ⌣ R1

=⇒ ΦR(x) + ΦS(x) = Φ{ϵ}(x) + ΦR(x)Φ{0}(x) + Φ∇(x)Φ{1}(x)
= 1 + ΦR · x + ΦR(x) · x
= 1 + 2xΦR(x)

Consider a word r1r2 . . . rn001 represented by S. This cannot contain a 001 anywhere in r1r2 . . . rn00 by
assumption.

As 00 at the end cannot create a 001, we see r1r2 . . . rn00 does not contain a 001 if and only if r1r2 . . . rn

does not contain a 001.

This gives us S = R001

Hence ΦS(x) = x3ΦR(x)

Combining the two equations gives

ΦR(x) + x3ΦR(x)− 2xΦR(x) = 1

=⇒ ΦR(x) = 1
1− 2x + x3

Example

Same as before, except use 000 instead of 001.

As before we have

ΦR(x) + ΦS(x) = 1 + 2xΦR(x)

The problem occurs when we try to do something like S = R001.

Consider 00 ∈ R

We see 00.000 /∈ S

We see 00000, 00000, 00000 has multiple occurrences of 000, two of them not at the end.

If r1 . . . rn = r1r2 . . . rn−200 ∈ R

Then r1r2 . . . rn000 = (r1r2 . . . rn−2000)︸ ︷︷ ︸
∈S

(00) ∈ S(00)

If r1r2 . . . rn = r1r2 . . . rn−10 ∈ R

=⇒ r1r2 . . . rn−10000 = (r1r2 . . . rn−1000︸ ︷︷ ︸
∈S

)(0) ∈ S0

This gives

S ⌣ S0 ⌣ S00 = R000

=⇒ ΦS(x)(1 + x + x2) = x3ΦR(x)

=⇒ ΦR(x) + x3

1 + x + x2 ΦR(x) = 1 + 2xΦR(x)

=⇒ ΦR(x) = 1 + x2 + x3

1− x− x2 − x3
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3.5 Excluded Substrings
Theorem

Let κ ∈ {0, 1}∗ be a non-empty binary string of length n. Let C be the collection of non-empty suffixes
γ of κ such that there exists a nκ = κγ.

Let C(x) =
∑

γ∈C xℓ(γ)

Then the generating series for the language of binary strings not containing κ is

Φ(x) = 1 + C(x)
(1− 2x)(1 + C(x)) + xn

Example

Let k = 000.n = ℓ(000) = ℓ(κ) = 3

Notice the suffixes of κ are 00 and 0. In this case

0.000 = 000.0.

00.000 = 000.00

In this case C = {0, 00}

This gives C(x) = xℓ(0) + xℓ(00) = x + x2

This gives

Φ(x) = 1 + x + x2

(1− 2x)(1 + x + x2) + x3

= 1 + x + x2

1− x− x2 − x3

Why does this work?

In the original method we always have

R ⌣ S = ϵ ⌣ R0 ⌣ R1

(R-language avoiding κ. R-language containing exactly one κ at the end).

The second relationship depends on C. Let C = {γ1, . . . , γκ}

We get a new relation

Rκ = S ⌣ Sγ1 ⌣ Sγ2 ⌣ . . . ⌣ Sγκ

From these two relations we get the generating series

ΦR(x) + ΦS(x) = 1 + 2xΦR(x)

and

xnΦR(x) = ΦS(x) + xℓ(γ)ΦS(x) + . . . + xℓ(γκ)ΦS(x)
= (1 + C(x))ΦS(x)

So ΦS(x) = xn

1+C(x) · ΦR(x)
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After this it is just algebraic manipulation to solve for ΦR(x).

Example

Let κ = 1010

R - avoid κ

S - κ occurs exactly once at the end

R ⌣ S = ϵ ⌣ R0 ⌣ R1

What happens if we append κ to the end of a word in R.

If the word in R ended with 10, then

r1r2 . . . rk10κ = r1r2 . . . rk101010

This is in S10.

In this case the 10 corresponds to a γ ∈ C as 10κ = κ10 = 101010

If the word does not end in 10, then we are fine, and

r1r2 . . . rn1010 ∈ S

Notice, the suffixes of κ = 1010 are

010, 10, 0.

nκ ̸= κ0 = 10100

10κ = κ10 = 101010

nκ ̸= κ010 = 1010010

From here we get

Rκ = S ⌣ S10

4 Recurrence Relations

4.1 Recurrences
Example

Let g0 = 1, g1 = 1 and gn = 2gn−1 + gn−2∀n ≥ 2

Questions

What can we say about
∞∑

n=0
gnxn

Can we find a closed form for it? What can we do with this closed form?

First, find a closed form for
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G(x) =
∞∑

n=0
gnxn

= 1 + x +
∞∑

n=2
gnxn

= 1 + x +
∞∑

n=2
(2gn−1xn + gn−2)xn

= 1 + x +
∞∑

n=2
2gn−2xn +

∞∑
n=2

gn−2xn

= 1 + x +
∞∑

n=2
2gn−1xn + x2

∞∑
n=0

gnxn

= 1 + x +
∞∑

n=2
2gn−1xn + x2G(x)

= 1 + x + 2x

∞∑
n=2

gn−1xn−1 + x2G(x)

= 1 + x + 2x(−g0x0 +
∞∑

n=1
gn−1xn−1) + x2G(x)

= 1 + x + 2x(−1 + G(x)) + x2G(x)
= 1 + x− 2x + 2xG(x) + x2G(x)
=⇒ G(x) = 1− x + 2xG(x) + x2G(x)
=⇒ G(x)(1− 2x− x2) = 1− x

=⇒ G(x) = 1− x

1− 2x− x2

This is our desired closed form expression.

Example

Let g0 = g1 = 1, and gn = 2gn−1 + gn−2∀n ≥ 2

Last class we showed

G(x) =
∞∑

n=0
gnxn = 1− x

1− 2x− x2

Consider 1− 2x− x2. I want to write this as (1− αx)(1− βx) for reasons that will make sense later.

Find the roots of y2 − 2y − 1.

(This is y2P ( 1
y ) where P (x) = 1− 2x− x2)

By the quadratic formula, the roots of y2 − 2y − 1 are 2±
√

4+4
2 = 1±

√
2.

This gives y2 − 2y − 1 = (y − (1 +
√

2))(y − (1−
√

2)).

Equiv: 1− 2x− x2 = (1− (1 +
√

2)x)(1− (1−
√

2)x)

This gives us

1− x

1− 2x− x2 = 1− x

(1− (1 +
√

2)x)(1− (1−
√

2)x)
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We can now do a partial fraction decomposition (Math 138).

That is, we can find an a & b such that

1− x

(1− (1 +
√

2)x)(1− (1−
√

2)x)
= a

(1− (1 +
√

2)x)
+ b

(1− (1−
√

2)x)

Multiplying both sides by the denominator gives

1− x = a(1− (1−
√

2)x) + b(1− (1 +
√

2)x)

With a bit of trial and error, we see a = 1
2 and b = 1

2 .

This gives us,

G(x) =
∞∑

n=0
gnxn = 1− x

1− 2x− x2 =
1
2

(1− (1 +
√

2)x)
+

1
2

(1− (1−
√

2)x)

= 1
2

∞∑
n=0

(1 +
√

2)nxn + 1
2

∞∑
n=0

(1−
√

2)nxn

=
∞∑

n=0

1
2((1 +

√
2)n + (1−

√
2)n)xn

This gives us gn = 1
2((1 +

√
2)n + (1−

√
2)n).

We notice in this case that 1−
√

2 ≈ −0.44. This means that (1−
√

2)n → 0 as n→∞.

This means for large n that

gn ≈
1
2(1 +

√
2)n

Further, as gn are all integers, we see 1
2 (1 +

√
2)n is very close to an integer for large n.

4.2 Homogeneous Linear Recurrence Relations
Let a1, a2, . . . , ad be a set of complex numbers (typically integers).

Let g0, g1, . . . , gm be a set of initial conditions. Here m ≥ d− 1.

Then the sequence g1, g2, . . . is a homogeneous linear recurrence relation if for all n ≥ m + 1 we have

gn + a1gn−1 + . . . + adgn−d = 0

Example

Our previous example is an example of such a relation. Here g1 = g0 = 1, and

gn − 2gn−1 − gn−2 = 0,∀n ≥ 2

Here a1 = −2, a2 = −1. In the previous example, we had

G(x) =
∞∑

n=0
gnxn = P (x)

(1 + a1x + a2x2) for some polynomial P (x)

Theorem
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Let gn + a1gn−1 + . . . + adgn−d = 0 be the recurrence relation. Then

G(x) = bmxm + . . . b0

1 + a1x + a2x2 + . . . + adxd

where bk = gk + a1gk−1 + . . . + adgk−d

where gn = 0 if n < 0.

Example

Let

G(x) =
∞∑

n=0
gnxn = 2x2 − 4x + 3

(1− 2x)2(1 + x)

1. Find a closed form for gn

2. Find initial conditions

3. Find recurrence relations

We know from partial fraction decomposition that there exists a, b, and c such that

2x2 − 4x + 3
(1− 2x)2(1 + x) = a

(1− 2x) + b

(1− 2x)2 + c

(1 + x)

Multiply by denominator

2x2 − 4x + 3 = a(1− 2x)(1 + x) + b(1 + x) + c(1− 2x)2

Evaluate at x = −1 gives, c = 1

Evaluate at x = 1
2 gives b = 1.

Knowing c = 1 and b = 1 we can simplify and get a = 1.

Hence

2x2 − 4x + 3
(1− 2x)2(1 + x) = 1

1− 2x
+ 1

(1− 2x)2 + 1
1 + x

This gives

G(x) =
∞∑

n=0
2nxn + 1

(1− 2x)2 +
∞∑

n=0
(−1)nxn

=
∞∑

n=0
2nxn +

∞∑
n=0

(
n + 1

1

)
2nxn +

∞∑
n=0

(−1)nxn

=
∞∑

n=0
(2n + (n + 1)2n + (−1)n)xn

=
∞∑

n=0
(2 · 2n + n2n + (−1)n)xn
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Hence

g0 = 2 · 20 + 0 · 20 + (−1)0 = 3
g1 = 2 · 21 + 1 · 21 + (−1)1 = 5
g2 = 17

Notice

(1− 2x)2(1 + x)
= (1− 4x + 4x2)(1 + x)
= (1− 3x + 0 + 4x3)
=⇒ gn = 3gn−1 + 0gn−2 + 4gn−3

=⇒ gn = 3gn−1 − 4gn−3

Linear Homogeneous Recurrence Equations

Version 1

Initial conditions g0, g1, . . . , gd−1

Recurrence Equation gn + a1gn−1 + . . . + adgn−d = 0,∀n ≥ d

Version 2

G(x) =
∞∑

n=0
gnxn = P (x)

Q(x)

Here, Q(x) = 1 + a1x1 + a2x2 + . . . adxd

Version 3

Assume

Q(x) = (1− λ1x)α1(1− λ2x)α2 . . . (1− λkx)αk

Then there exists polynomials P1(x), P2(x), . . . , Pk(x) with degPi(x) ≤ αi − 1 such that

gn = P1(n)λn
1 + P2(n)λn

2 + . . . + Pk(n)λn
k

5 Introduction to Graph Theory

5.1 Definitions
Definition

A graph G is a collection of vertices, (V (G)), say {v1, . . . , vn} and a collection of unordered pairs (edges)
between the vertices, E(G) = {(vi1 , vj1), (vi2 , vj2), . . .}.

For now, we assume the number of vertices is finite. We will assume that there is at most one edge
between two vertices. We will assume the edges are undirected (i.e. pairs are unordered). We will
assume that there are no edges from a vertex to itself.

Example

Let G be a graph with

V (G) = {1, 2, 3, 4} and
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E(G) = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}

We often draw graphs with circles around each vertex, and lines between two vertices indicating an edge.

1 2

3 4

We say two vertices are adjacent if there is an edge between them. For example 1 & 2 are adjacent, 2 &
3 are not.

We define the neighbours of a vertex to be all the vertices that it is adjacent to.

Example

The neighbours of 2 are 1 & 4

If we can draw the graph in such a way that no edges cross each other, then that graph is called planar.
The previous example is planar.

Example

The graph G on five vertices, and an edge between every pair of vertices is not planar.

1
2

3
4

5

In this case, if we remove any edge, the new graph is planar.

1
2

3
4

5

There are a huge number of applications to graph theory.

1. Networks
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2. Traveling Salesperson Problem

3. Colouring countries on a map

There are a lot of variations (which are all interesting)

1. Multiple edges

2. Loops

3. Directions

4. Weights

5. Infinite graphs

6. We could allow unordered types (instead of pairs)

Definition

We say that the degree of a vertex deg(v) is the number of edges touching the vertex.

1

2

3

4

5

deg 4

deg 3

Fact

The degree of v is equal to the number of neighbours of v.

Proof

At the other edge of an edge touching v is a neighbour of v.

Theorem

∑
v∈V (G)

deg(v) = 2|E(G)|

Proof

We see each edge is connected to two vertices, say v1 & v2. Hence each edge contributes 1 to the degree
of v1 and 1 to the degree of v2. This gives the equation.

Corollary

The number of vertices with odd degree is even.

Recall that we showed∑
v∈V (G) deg(v) = 2|E(G)|
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The right hand side is an even number.

Hence
∑

v∈V (G) deg(v) must be even.

If we had an odd number of vertices of odd degree, then
∑

v∈V (G) deg(v) would be odd.

Hence we have an even number of vertices of odd degree.

Corollary

The average degree of a vertex is

2|E(G)|
|V (G)|

Proof

Average degree

1
|V (G)|

∑
v∈V (G)

deg(v) = 2|E(G)|
|V (G)|

5.2 Isomorphism
Definition

Let G1 and G2 be graphs. We say G1 is isomorphic to G2 (G1 ≃ G2) if there exists a bijection
f : V (G1)→ V (G2) with the additional property that

(v1, v2) ∈ E(G1) ⇐⇒ (f(v1), f(v2)) ∈ E(G2)

Example

A
B

C
D

E

1
2

3
4

5

To see these are isomorphic, consider the bijection

A −→ 4
B −→ 3
C −→ 5
D −→ 2
E −→ 1

This is easy to see there is a bijection from V (G1) to V (G2)

We can check the edges
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E(G1) −→ E(G2)
(A, D) −→ (4, 2)
(E, A) −→ (1, 4)
(E, B) −→ (1, 3)
(E, C) −→ (1, 5)
(E, B) −→ (1, 2)

Fact

Let G1 and G2 be isomorphic with bijection f : V (G1)→ V (G2).

Then

1. They have the same number of vertices

2. Same number of edges

3. deg(v) = deg(f(v))

G1 G2

G3 G4 G5

Which are isomorphic? Which are not?

G1 G2 G3 G4 G5
Edges 5 4 5 4 4

Vertices 4 4 5 4 4
# of vertices with deg 1 0 1 2 1 0

Based on this information, the only two graphs that might be isomorphic are G2 and G4.

Example
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These are not isomorphic despite having the same number of edges, vertices, and all vertices having the
same degree (3).

Definition

We say a graph is k−regular if deg(v) = k for all v ∈ V (G).

We say a graph is regular if it is k−regular for some k.

Example

The graph with 1 vertex and no edges is 0−regular.

The graph with n vertices and no edges is 0−regular.

Example

What do the 1−regular graphs look like?

1-regular graph with 2 vertices.

As the number of vertices of odd degree is even, and 1 is odd, we have that 1-regular graphs have an
even number of vertices.

1 regular graph with 4 vertices.

In general, a 1 regular graph looks like

· · ·

Example

What do 2-regular graphs look like?

2 regular graphs are a collection of disjoint cycles.

Example

What is the smallest k−regular graph (i.e. minimal vertices)?
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k+1

Let V (G) = {1, 2, . . . , k + 1} and put an edge between every pair of vertices.

Definition

A complete graph Kn is a graph with n−vertices and an edge between every vertex.

Note K is (n− 1)−regular

· · ·

Question

How many edges does Kn have?

We know there are n−vertices, and every vertex has degree n− 1.

This gives

2|E(G)| =
∑

v∈V (G)

deg(v) =
∑

v∈V (G)

n− 1

= n · (n− 1)

=⇒ |E(G)| = n(n− 1)
2

5.3 Bipartite Graphs
Definition

We say G is a bipartite graph if we can divide the vertices V (G) into two disjoint sets A and B such
that all edges have one end in A and one end in B.

Example

Which of the following are bipartite (G1, G2, G3 respectively)?

1 2

3 4

1

2
3

4
5

6 7

32

5 8

41

G1 is bipartite. To see this, let A = {1, 4} and B = {2, 3}

1 2

34

A B

G2 is not bipartite. To see this, assume it is, and hope for a contradiction. Assume without loss of
generality that 1 ∈ A. As there is an edge from 1 to 5 and 1 to 2, as there are no edges from A to A,
we see 2, 5 ∈ B. There is an edge from 5 to 4, hence 4 ∈ A. Similarly, there is an edge between 2 and 3.
Hence, 3 ∈ A. But there is an edge from 3 to 4, both in A.
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This gives us a contradiction. Hence G2 is not bipartite.

For G3 we can assume a vertex is in A, and see what we derive.

6 7

32

5 8

41

1

3

6

8

2

4

5

7

Example

Let G be a 1-regular graph on 10 vertices.

1

2

3

4

5

6

7

8

9

10

This is bipartite. To see this, we could set A = {1, 3, 5, 7, 9}, B = {2, 4, 6, 8, 10}

OR

A = {1, 4, 5, 8, 9}, B = {2, 3, 6, 7, 10}

Example

Let G be a graph on 100 vertices, V (G) = {1, 2, 3, . . . , 100}

We say (v1, v2) ∈ E(G) if and only if |v1 − v2| = 1 or |v1 − v2| = 3

The first couple vertices of this graph are

1 2 3 4 5 6

We see that odd numbers are not connected to each other, and even numbers are not connected to each
other. We can take

A = {1, 3, 5, . . . , 99}B = {2, 4, 6, . . . , 100}

Note

Technically "connected" has meaning in graph theory. It is better to say there is no edge between two
odd vertices.

Definition

We say G is a complete bipartite graph if it is bipartite, and every vertex in A has an edge to every
vertex in B.

This is typically denoted Kn,m where |A| = n, |B| = m.

K2,2,K2,3,K3,3 respectively.
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Question

How many vertices does Kn,m have?

We see n = |A|, m = |B| and V (G) is a disjoint union of A and B. So |V (G)| = m + n.

The number of edges is m · n. To see this, note that there are n vertices in A. Further, every vertex has
an edge to all m vertices in B. There are no other edges. Hence there are n ·m edges.

Theorem

Let G1 be isomorphic to G2. Then G1 is bipartite ⇐⇒ G2 is bipartite.

Proof

To see this, let f : V (G1) → V (G2) be an edge-preserving bijection. Then if A, B demonstrate G1 is
bipartite, f(A), f(B) will demonstrate G2 is bipartite.

Example

Consider the 3-regular graphs on 6-vertices.

1

2 3

4

5 6

1

2

3

4

5

6

We see G2 is bipartite (and is isomorphic to K3,3 using A = {1, 2, 3}, B = {4, 5, 6}).

G1 is not bipartite. To see this, assume 1 ∈ A. Then 2, 3 ∈ B. But there is an edge from 2 to 3. A
contradiction.

Example

Let Kn,m be a k−regular bipartite graph. Show n = m or k = 0.

If Kn,m is k−regular, we see every vertex in A has degree k.

So there are k · n edges.

Similarly, looking at B, we have k ·m edges.

This gives kn = km, hence k = 0 or m = n.

5.4 Specifying Graphs
1) Draw a picture
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2) Specify the vertices and edges.

V (G) = {1, 2, 3}

E(G) = {(1, 2), (1, 3)}

3) Giving the vertices, and a rule for the edges.

Example

Let V (G) be the set of all subsets of {1, 2, 3}

We say (A, B) ∈ E(G) if A ∩B = ∅

{}

{1,2,3}

{2,3}{1,2} {1,3}

{3} {1} {2}

Adjacency Matrix

This is a |V (G)| × |V (G)| matrix, with columns/rows induced by V (G).

We set M [i, j] = 1 if (i, j) ∈ E(G) and 0 otherwise.

Example

A

B C

D
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


As there are no loops, all terms on the diagonal are 0. As the graph is undirected, M = M⊤. As we do
not allow multiple edges, entries are bounded by 1.

Powers of these matrices tell us information about walks.
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This is annoying if |V (G)| is large.

Adjacency List

Vertex Neighbours
A BC
B AC
C ABD
D C

5.5 Paths and Cycles
Definition

Let G be a graph. We define a walk from v0 to vn as a sequence of vertices v0, v1, v2, . . . , vn−1, vn such
that (vi, vi+1) ∈ E(G) for i = 0, 1, . . . , n− 1. This is a walk of length n (as there are n−edges).

Example

Find all walks of length 2 starting at 1 of

1

3

2

4

1− 3− 2 1− 3− 1
1− 2− 3 1− 2− 4
1− 2− 1 1− 3− 4

Definition

A path is a walk where all vertices are distinct.

Example

For the previous graph, there are 4 paths of length 2 starting at 1.

They are 1− 2− 3, 1− 3− 2, 1− 2− 4, 1− 3− 4

Fact

The longest path in a graph G has at most length |V (G)| − 1

Example

1

2

3

4

The longest path is length 1, even though we have |V (G)| = 4

Theorem

If there exists a walk from x to y then there exists a path from x to y.

Proof

If x = y, we are done. Take the path of length 0 starting/ending at x.
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Let x − v1 − v2 − . . . − vn−1 − y be a walk from x to y. If all vertices are distinct, we are done. Hence
assume vi = vj for i ̸= j (with v0 = x, vn = y). Assume i < j.

Consider the new walk

x =v0 − v1 − v2 − . . .− vi − vj+1 − vj+2 − . . .− vn

(Remove everything between v1 and vj+1)

Either this new walk has all vertices distinct, or we repeat.

Note, the initial walk is a finite length. Every time we apply this process we get something shorter. This
process will eventually terminate.

Example

1

3

2

4

1− 2− 3− 2− 4− 3− 2− 1− 3− 4
1− 2− 3− 2− 1− 3− 4
1− 3− 4

Alternatively

1− 2− 3− 2− 4− 3− 2− 1− 3− 4
1− 2− 3− 4

Theorem

If there is a path from x to y and from y to z then there is a path from x to z.

x− v1 − . . .−vn−1 − y − u1 − u2 − . . .− um−1 − z

is a walk from x to z

We can use the previous result to get a path.

Definition

Let G1 and G2 be graphs.

We say G1 is a subgraph of G2 if V (G1) ⊆ V (G2) and E(G1) ⊆ E(G2).

Example

Which of these graphs are subgraphs of another graph?

1 2

43

G1

1 2

43

G2

1 2

43

G3

1 2

43

G4

G1, G2, G3, and G4 are subgraphs of G4.

G3 is a subgraph of both G1 and G2.
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Everything is a subgraph of itself.

Note

Let G1 be a subgraph of G2 (not example above)

• |E(G1)| ≤ |E(G2)|

• |V (G1)| ≤ |V (G2)|

• If G2 is bipartite, then G1 is (probably) bipartite. This won’t work if we remove all of A or all of
B from V (G2).

• Every graph G1 is a subgraph of the complete graph on vertices V (G1).

Definition

If G1 is a subgraph of G2 and V (G1) = V (G2), then we say G1 is a spanning subgraph of G2.

If in addition, E(G1) ̸= E(G2) then G1 is a proper spanning subgraph.

Fact

A spanning subgraph of a bipartite graph is bipartite.

Definition

A connected 2-regular subgraph is called a cycle.

Example

Find some cycles in

1 2

43

G1

1 2

3

1 2

43

2

43

Theorem

Let G be a graph such that deg(v) ≥ 2 for all v ∈ V (G)

Then G contains a cycle.

Proof

Let v1 − v2 − v3 − . . .− vn be a path of maximal length. Notice, deg(vn) ≥ 2.

Say (vn, x) ∈ E(G), x ̸= vn−1. If x ̸= vi for all i = 1, 2, . . . , n− 1, then v1 − v2 − v3 − . . .− vn − vx is a
longer path (which contradicts the fact that we took the longest path).

Hence x = vi for some i = 1, 2, . . . , n− 1

We have by assumption that i ̸= n− 1.

v1 v2 . . . vi−1 vi vi+1 . . . vn

This gives us a cycle v1 − vi+1 − . . .− vn − vi

(Technically a walk contains more information than a cycle, as there is a concept of direction and start
and end. By this we can mean the image of the walk).

Example

46



1241 MATH 239: Introduction to Combinatorics Jaiden Ratti

1 2 3

4 5 6

Step 1

Find a longest path (1− 4− 2− 5− 3− 6).

1 2 3

4 5 6

Step 2

6 is connected to something. Say 2.

Connect 2 to 6 and remove everything from the path before 2.

1 2 3

4 5 6

Walk 2− 5− 3− 6− 2

Definition

We say the girth of a graph is the size of the smallest cycle.

Definition

We say a cycle is a Hamiltonian cycle if it contains every vertex.

Definition

A path is a Hamiltonian path if it visits every vertex.

Example

1 2 3

4 5 6

The girth is g(G) = 3 (given by 1− 2− 4− 1)

1− 2− 3− 6− 5− 4 is a Hamiltonian path

1 2 3

4 5 6

1− 2− 3− 6− 5− 4− 1 is a Hamiltonian cycle
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1 2 3

4 5 6

Exercise

Let Kn be a complete graph on n−vertices. How many cycles of size 3 does Kn contain? Size 4? Any
size?

Fact

Let G1 be isomorphic to G2. Then

1. g(G1) = g(G2) = girth(G1) = girth(G2)

2. G1 has a Hamiltonian path/cycle if and only if G2 does.

5.6 Connectedness
Definition

Let G be a graph. We say G is connected if for all v, u ∈ V (G), there exists a path from v to u.

Example

is the only 1-regular connected graph.

2-regular connected graphs include

These are the only examples.

A complete graph is always a connected graph.

This is true because there is always a path (of length 1) between two vertices.

Theorem

Let G be a graph. Let v ∈ V (G) be such that there is a walk from v to u for all w ∈ V (G). Then G is
connected.

Proof
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Let u, w ∈ V (G). We know there exists a walk u − u2 − u3 − . . . − un−1 − v. There also exists a walk
w − w2 − w3 − . . .− wm−1 − v.

Hence there is a walk.

u− u2 − u3 − un−1 − v − wm−1 − . . .− w2 − w1

Hence there exists a path between u and w by previous result. Hence G is connected.

Theorem

Let G1 be isomorphic to G2. Then G1 is connected if and only if G2 is connected.

Definition

Let G be a graph. We say G is disconnected if it is not connected.

Example 1-regular graph on 6 vertices

Notice, both of the two graphs below are disconnected. But one is more disconnected than the other.

Definition

We say a subgraph H is a component of G if

1. H is connected

2. H is a subgraph of G

3. If H2 contains H as a proper subgraph, then H2 is disconnected.

Example

Consider

1

2 3 b

a

c

1

2 b

a

is not a component as it is not connected.

1

2

is not a component because it is a proper subgraph of the connected subgraph.

1

2 3
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In this case the two components are

1

2 3 b

a

c

The number of components measures how disconnected a graph is.

Theorem

Let G1 be isomorphic to G2. Then G1 has the same number of components as G2.

Recall

H is a proper subgraph of G if H is a subgraph and either V (H) ̸= V (G) or E(H) ̸= E(G).

Definition Let X ⊆ V (G). We define a cut induced by X as the set of edges with one end in X and one
end outside of X.

Example

Let X = {1, 2, 3} for the graph

1 2 3

4 5 6

The edges in pink are those induced by the cut X = {1, 2, 3}

1 2 3

4 5 6

Example

Find a non-empty, proper set X ⊆ V (G) such that the cut induced by X is empty.

1

2 3 b

a

c

Notice the cut induced by {1, 2, 3} is empty. We could have alternatively used {a, b, c} to get a similar
result.

Example

Can we find a proper non-empty set X ⊆ V (G) such that the cut induced by X is empty?

7

21

5 6

43
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Assume 1 ∈ X. (If 1 ̸∈ X, a similar argument holds). As (1, 2) ∈ E(G), and we want the cut to be
empty, we must have 2 ∈ X.

Similarly, 3 ∈ X as (1, 3) ∈ E(G). Similarly, 4, 5, 6 and 7 are all in X. Hence X is not a proper subset
of V (G).

If we instead assumed 1 ̸∈ X, we could show 2, 3, 4, 5, 6 and 7 are not in X, hence X would be empty.

Recall

Definition

Let X ⊆ V (G). We say that the cut induced by X is the set of edges (v1, v2) ∈ E(G) such that v1 ∈ X
and v2 ∈ V (G) \X.

Theorem

A graph is disconnected if and only if there exists a non-empty proper X ⊆ V (G) such that the cut
induced by X is empty.

Note: Proper means X ⊆ V (G) and X ̸= V (G) (strict subset).

Proof

Assume G1 is disconnected.

Hence there exists x, y ∈ V (G) such that there is no path between x and y.

Let X by the set of vertices connected to x by a path. We see x ∈ X, hence X is non-empty. Further,
y ̸= X, hence it is proper.

Consider (v1, v2) in the cut induced by X. Assume v1 ∈ X, v2 ̸∈ X. Assume v1 ∈ X, v2 ̸∈ X. There is
a path from x to v1 and from v1 to v2, hence from x to v2, a contradiction. The cut induced by X is
empty.

Assume for the other direction there exists a non-empty proper X such that the cut induced by X is
empty.

There exists x ∈ X and y ̸∈ X. We want to show there is no path between x and y. Assume for
contradiction that x− v1 − v2 − . . .− vn − y is such a path.

Let k be the maximal term such that vk ∈ X, vk+1 ̸∈ X. (Let x = v0, y = vn+1). Then (vk, vk+1) is an
edge in the cut induced by X, which is supposed to be empty.

5.7 Euler Tours
Eulerian Circuits

Example (Königsberg, 18th century)
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The map above is actually not an image. It’s TikZ. See source code here.

Question

Can we take a walk from your house, crossing every bridge exactly once, and end up back at your house.

We can translate this question to a graph, and walk on a graph.

A

B

C

D

Question (Revised)

Does there exist a walk starting and ending at the same vertex that goes through every edge exactly
once.

This is not possible (for this graph).

We see every time such a walk goes through a vertex, it must enter and exit via different edges. Hence
if it is visited k times, the vertex has degree 2k.

That is, every vertex has even degree.

In this case, deg(A) = deg(C) = deg(D) = 3 and deg(B) = 5. None of these have even degree.

Hence such a walk does not exist for this graph.

Definition

An Eulerian Circuit is a walk that starts and ends at the same vertex and goes through every edge
exactly once.

Definition

52
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An Eulerian walk is a walk that goes through every edge exactly once. This means start and end at
different locations.

Example: Modern day Kaliningrad

A

B

C

D

B −A−D −B − C −D is an Eulerian walk.

Question

Is it always possible to find an Eulerian circuit if all vertices have even degree

Answer

If G is disconnected, no. If G is connected, then yes. We prove this by induction.

Theorem

Let G be a connected graph such that every vertex has even degree. Then G has an Eulerian Circuit.

Note: This proof also works for multiedges and loops.

Proof

We will do this by induction on the number of edges in the graph

Cases

53



1241 MATH 239: Introduction to Combinatorics Jaiden Ratti

Assume the statement is true for every connected graph with (m or fewer)−edges.

Notice, every vertex has degree at least 2.

Hence G will have a cycle

v1 − v2 − . . .− vn−1 − v1

We remove this cycle from the edge set of the graph.

Every vertex will have even degree. Every component will have m or fewer edges. Hence every component
has an Eulerian circuit. Further, every component shares a vertex with the cycle. We now glue things
together.

I.e. component with circuit vi − w1 − w2 − . . .− wm − vi

We stick this in as v1 − v2 − . . .− v3 − w1 − . . .− wm − vi − vi+1

Eulerian Circuits

Recall

An Eulerian circuit is a walk starting and ending at the same vertex and using every edge exactly once.

We showed that if G was connected and all vertices had an even degree, then G had an Eulerian circuit

Example

1 2 3

4 5 6

Step 1

Find a cycle.

For example 1− 2− 3− 6− 5− 4− 1

Step 2

Remove this cycle from the graph to get a number of components.

1 2 3

4 5 6

Repeat arguments on components to get the two cycles.

1− 2− 3− 6− 5− 4− 1
1− 2− 6− 5− 2− 3− 6− 5− 4− 4− 1

Note

A similar proof works for Eulerian Paths. A 45 bridge version exists in Bristol.

54



1241 MATH 239: Introduction to Combinatorics Jaiden Ratti

5.8 Bridges / Cut-edges
Definition

An edge is a bridge (or cut edge) if removing this edge produces a graph with moire components.

Example

1 2 3 4

5 6 7 8

The edge (2,6) is a bridge. After removing this edge we get two components.

The edge (4,8) is also a bridge.

Theorem

If e is a bridge of a connected graph G, then G \ {e} has two components.

The two components will be the set of vertices in G \ {(v, w)} connected to v, say V . Similarly for u,
say U .

(Here "connected to" means there exists a path from u to this vertex).

If x ∈ V then there is no path from v to x in G \ {e}.

There is a path from v to x in G.

This means the path goes through the edge (v, x). Hence there is a path from u to x.

Hence for any vertex x, if x ̸∈ V , then x ∈ U , and if x ̸∈ U , then x ∈ V .

Hence G \ {(v, u)} has two components.

Example

1 2 3 4

5 6 7 8

Notice that an edge in the previous graph is either contained in a cycle, or a bridge, but not both.

Theorem

An edge is a bridge if and only if it is not in a cycle.

Equivalently

Theorem

An edge is not a bridge if and only if it is not contained in a cycle.

Proof

Let (v, w) be in a cycle, say

v − u− u2 − u3 − . . .− un − v

removing (v, u) leaves a graph where v has a path to u.

This gives, the set of vertices with a path to v is the same set as the set of vertices with a path to u.
Hence we have the same number of components.

Assume next that (u, v) is not a bridge. If we remove this edge, we still have a path from u to v, say

u1 − u2 − . . .− un − v
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This gives that

u− u2 − u3 − . . .− un − v − u

is a cycle in G.

Theorem

If there exists two distinct paths from u to v, then the graph contains a cycle.

Example

1 2

3

4

5 6

This has two distinct paths from 1 to 6. Namely,

1− 2− 3− 5− 6
1− 2− 4− 5− 6

Notice if we remove the edge (2, 3) that there exists a walk from 2 to 3. We go

2− 1− 2− 4− 5− 6− 5− 3

Hence there exists a path from 2 to 3 without the edge (2, 3). This is 2− 4− 5− 3.

Adding the edge back in gives a cycle 2− 4− 5− 3− 2

How could we prove this in general?

Theorem

If there exists two different paths from u to v, then G has a cycle.

Proof

Take an edge that is in one path but not in the other.

If we remove this edge, then we still have the same number of components. Hence this edge is not a
bridge. Hence this graph has a cycle.

6 Trees

6.1 Trees and Minimally Connected Graphs
Definition

A graph is a tree if it contains no cycle and it is connected.

Example
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Definition

We call this graph a forest if every component is a tree.

Definition

Let T be a tree. A vertex v ∈ V (T ) is a leaf if it has degree 1.

Example

A 1−regular graph is a forest, and every vertex is a leaf.

Theorem

Let T be a tree. Then there is a unique path from u to v for all u, v ∈ V (T ).

Proof

Our tree is connected, hence there is a path. If there existed two distinct paths, then T would have a
cycle. Trees have no cycles. Hence the path is unique.

Theorem

Let T be a tree. Then every edge is a bridge.

Proof

If we had an edge that was not a bridge, then it is in a cycle. Trees have no cycles. Hence every edge is
a bridge.

Note This is also true for forests.

Question: What is the relationship between |V (T )| and |E(T )|

Example (G1, G2, G3 respectively).

G1 G2 G3
|V (T )| 5 4 7
|E(T )| 4 3 6

Theorem

Let T be a tree. Then |E(T )| = |V (T )| − 1

Proof

We will use induction on the number of vertices.

Base Case
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1−vertex =⇒ 0 edges

2−vertices =⇒ 1 edge

Inductive Hypothesis

Assume this is true for all trees with m or fewer vertices.

Inductive Step

Let T be a tree with m + 1 vertices. As T is connected, there is a path from every u to v, and hence
there is an edge. This edge is a bridge.

If we remove this bridge, we have two components, each a tree, and each with m or fewer vertices.

Let the first component be a tree with s vertices, and the seconds have t vertices. We have s, t ≤ m and
s + t = m + 1

By induction, the first tree has s− 1 edges. The second has t− 1 edges. This gives us that the original
tree with m + 1 vertices has

(s− 1)︸ ︷︷ ︸
first tree

+ (t− 1)︸ ︷︷ ︸
second tree

+ 1︸︷︷︸
bridge

= s + t− 1 = m

Example

This gives 10 vertices in total and 4 + 4 + 1 = 9 edges.

How many leaves does a tree have?

4 3 2

Question

Can a tree with p vertices have fewer than 2 leaves, or more than p− 1 leaves?

Theorem

Let T be a tree. Then t has at least 2 leaves. (We assume |V (T )| ≥ 2).

Proof

By induction

Base Case

2−vertices =⇒ 2 leaves

Both vertices are leaves. T has 2 leaves.

Inductive Hypothesis

Assume this is true for every tree with m or fewer vertices.
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Inductive Step

Let T be a tree with m + 1 vertices. This tree will have an edge and this edge is a bridge.

Call this edge (u, v). Let the two trees that result from removing this bridge be U and V .

We have two cases.

We could have u is a leaf, and v is not (or equivalently, v is a leaf, u is not) or both vertices are not
leaves of T .

Case 1:

u is a leaf of T , v is not. Hence by induction V will have two leaves. It is possible one of these is v. One
of these is not v, call it w.

We can check that u and w are leaves of T .

u v w

Case 2

Neither u and v are leaves.

As before, U and V will have two leaves. At least on of the leaves of U is not u, call this x.

At least one of the leaves of U is not v, call this w. Then x and w are leaves of T .

w

v

u x

6.2 Spanning Trees
Recall

Definition

We say a subgraph H of G is a spanning subgraph if V (H)− V (G).

Definition

We say G is a tree if it contains no cycles and is connected.

Definition

We say T is a spanning tree of G if T is a spanning subgraph of G and it is a tree.

Example

Find a spanning tree of
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A

C

B

D

E

F

G

Example

Does a 1−regular graph on 4 vertices have a spanning tree?

No We cannot find an edge from the left two vertices to the right two vertices. There are no spanning
subgraphs, hence no spanning trees.

Theorem

A graph G has a spanning tree if and only if G is connected.

Proof

Assume first that G has a spanning tree, say T .

Take any two vertices in G, say u and v. Then u, v ∈ V (T ) as T is a spanning subgraph.

As T is a tree, there exists a (unique) path from u to v. This path uses edges in E(G). Hence there
exists a path from u to v in G. This proves G is connected.

Assume for the other direction that G is connected.

E(G) will contain some edges that are bridges, and some that are not. We will construct our spanning
tree by removing non-bridge edges.

Create a subgraph of G by removing an edge that is not a bridge. If no such edge exists, we have a tree.
Repeat this process on this new subgraph as needed.

1. We never remove a vertex, so all of these subgraphs are spanning.

2. We never remove a bridge, hence all of these subgraphs are connected.

3. At some point this process will step (I.e. when |E(H)| = |V (H)| − 1)

The result after repeating this will be a spanning connected subgraph where every edge is a bridge. I.e.,
a spanning tree.

Example

Find a spanning tree of the 4× 4 graph

Method 2 - Grow the tree

Start with any vertex. This will be our starting (non-spanning) tree.

Find any edge from inside this tree to outside this tree. Add this edge to get a larger tree. Repeat as
necessary until you have every vertex.
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Example Same as before

1

2 12

15

9

1011

3

4 5

8

6 7 13

14

6.3 Characterizing Bipartite Graphs
Recall a graph G is bipartite if there exists A, B ⊆ V (G) where

1. V (G) = A ∪B

2. A ∩B = ∅

3. Every edge (u, v) has one end in A and one end in B.

Theorem

A cycle of odd length is not bipartite.

Proof

Assume the graph is bipartite.

Let v be a vertex. Assume without loss of generality that v ∈ A.

1

A

2

B

3

A
4

B

5

A

The two adjacent vertices to v are in B.

The vertices adjacent to the vertices adjacent to v are in A. (I.e. the vertices with a path of length 2
from v).

Continue this process. Vertices with a path of length 1, 3, 5, . . . are in B and length 0, 2, 4, 6, . . . are in A.

This is where the problem occurs, as there is a path of odd length from v to v, hence it is in both B and
A.

Hence the cycle is not bipartite.

Corollary
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If G contains a cycle of odd length, then it is not bipartite.

Example

Bipartite ¬ Bipartite

Proof

The subgraph of a bipartite graph is bipartite. A cycle of odd length is not bipartite.

Theorem

A graph is bipartite if and only if it does not contain a cycle of odd length.

Equivalently

Theorem

A graph is not bipartite if and only if it contains a cycle of odd length.

Proof

Assume without loss of generality that G is connected. We have already shown that if G has a cycle of
odd length, then it is not bipartite or equivalently, if it is bipartite, then it will not contain a cycle of
odd length.

We will show that if G is not bipartite then it will contain a cycle of odd length.

Let G be a connected graph that is not bipartite. As G is connected it has a spanning tree T . All trees
are bipartite. Hence we can divide the vertices of V (T ) into two sets A and B such that all edges in T
have one end in A and one end in B.

As G is not bipartite, there exists some edge (u, v) ∈ E(G) such that either u, v ∈ A or u, v ∈ B.

We see (u, v) ̸∈ E(T ), (as T is bipartite). There is a path from u to v in T , because T is a tree. Further
this path is even length.

Connecting (u, v) to this path gives a cycle of odd length, which proves this result.

To see the path is even length, we see the path is of the form

u− u1 − u2 − u3 − . . .− un−1 − v

Assume u, v ∈ A (same argument works if they are in B).

u︸︷︷︸
A

− u1︸︷︷︸
B

− u2︸︷︷︸
A

− u3︸︷︷︸
B

− u4︸︷︷︸
A

− . . .− v︸︷︷︸
A

Distance from A’s is even.

Example
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Step 1 - Find spanning tree

Step 2 - Make spanning tree bipartite

A

B

A B

A

B

Find an edge in E(G) that has both ends in A or both ends in B.

A

B

A B

A

B

At this point we construct an odd length cycle.

7 Planar Graphs

7.1 Planarity
Definition

We say a graph is planar if we can draw the graph such that no edges cross.
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Example

K4 - complete graph on 4 vertices.

1

3

2

4

6

7

8 9

1

3

2

4

This gives us two planar embedding of K4. Hence K4 is planar.

Example

(Not proven yet) K5 does not have a planar embedding.

Definition

A planar embedding is a diagram where none of the edges cross.

Definition

Let G have a planar embedding. Then we say a face of the embedding is a region "contained" by the
graph.

Example

Consider the embedding of K4

f1 f4f2

f3

This embedding has 4 vertices, 6 edges and 4 faces.

Example

Let T be a tree.

Then T is planar and has a planar embedding

f1
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1 face, 5 vertices, 4 edges

Example

Let G be a connected 2-regular graph. G is planar and has two faces.

f2
f1

Fact

If G is isomorphic to H, then G is planar if and only if H is planar.

Fact

If H is a subgraph of a planar graph G, then H is planar.

Definition

We say two faces are adjacent if they share an edge.

Definition

Let u1 − . . . − un be a minimal walk containing a face and which visits every vertex touching the face.
The length of this walk is the degree of the face.

Example - K4

f1 f4f2

f3

deg(f2) = 3 given by

f1

Similarly, deg(f2) = deg(f3) = deg(f4) = 3

Example

A

D

B C

f2

f1

deg(f2) = 3 given by the walk A−B − C −A

The walk for f1 is A−B − C −D − C −A. That gives deg(f1) = 5.

For K4,
∑

deg(f) = 3 + 3 + 3 + 3 = 12
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Notice K4 has 6 edges.

For

∑
deg(f) = 3 + 5 = 8

This had 4 edges.

Theorem ∑
deg(f) = 2|E(G)|

Proof

When we add the degree of the faces, we count every edge twice. One for each side of the edge.

This is known as the handshaking lemma for faces. It is very similar to the formula
∑

deg(v) = 2|E(G)|
for the degree of each vertex.

Euler’s Formula

Consider a connected graph with 4 vertices. What is the relation between the number of faces and
number of edges.

4 vertices, 3 edges, 1 face

Case 2

4 vertices, 4 edges, 2 face

Case 3

4 vertices, 5 edges, 3 face

Case 4

Observation: When we increase the number of edges, we increase the number of faces.

Consider instead what happens if we leave the number of edges the same, and increase the number of
vertices.
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G1 G2 G3 G4

G1 G2 G3 G4
# edges 6 6 6 6

# vertices 4 5 6 7
# faces 4 3 2 1

Observation: If we increase the number of vertices, we decrease the number of faces.

Guess

Let p = |V (G)|, q = |E(G)|, f = #faces. We can guess

f − q + p = 2

Test

p = 9, q = 12, f = 5

7.2 Euler’s Formula
Theorem (Euler)

Let G be a planar connected graph with p vertices, q edges and f faces. Then

p + f − q = 2

Proof

We will prove this by induction on the number of edges.

Let G have p−vertices. The graph with a minimal number of edges that is connected is a tree. A tree
has q = p− 1 edges. The only face of this planar graph is the outside face, hence f = 1.

This gives p + f − q = p + 1− (p− 1) = p + 1− p + 1 = 2

Hence Euler’s Formula holds for a tree.

Assume Euler’s formula holds for all p− 1 ≤ q ≤ Q, and a graph with Q + 1 edges is planar.

Notice G is not a tree. Hence there will contain an edge that is not a bridge.

The face on either side of this not bridge will be different faces. Remove this edge to get a new graph
with q′ = q − 1 edges, p′ = p vertices and f ′ = f − 1 faces in this new graph. By induction

f ′ + p′ − q′ = 2

This implies

(f − 1) + (p)− (q − 1) = 2 =⇒ f + p− q = 2 as required

Example
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not a bridge merged face

not a bridge

q = 7 q = 5
p = 5 p = 5
f = 4 f = 3

not a bridge

merged face

merged face

not a bridge

q = 5 q = 4
p = 5 p = 5
f = 2 f = 1

Question

Is the # of cycles in a graph related to the number of faces?

Answer: Not in an obvious way, so probably no.

Question

Can we find a planar graph where deg(v) = 3 for all v, and deg(f) = 3 for all f .

If so, what does it look like.

We know ∑
deg(v) = 2|E(G)|∑
deg(f) = 2|E(G)|

|V (G)|+ |F (G)| − |E(G)| = 2

Let p = |V (G)|, q = |E(G)|, f = |F (G)|

First equation gives: 3 · p = 2q =⇒ p = 2
3 · q

Second equation gives: 3 · f = 2q =⇒ f = 2
3 · q

Using this information in Euler’s formula gives

2 = p + f − q = 2
3 · q + 2

3 · q − q = 1
3q =⇒ q = 6
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If such a graph exists, it has 6 edges, 4 vertices and 4 faces.

Every face and vertex has degree 3.

This is an example of a platonic solid.

7.3 Platonic Solids
Definition

A graph G is a platonic solid if

1. It is connected and planar

2. All vertices have the same degree

3. All faces have the same degree

Example

We showed K4 is a platonic solid where all vertices have degree 3 and all faces have degree 3.

Theorem

There are only 5 platonic solids.

Proof

Assume deg(f) = df and deg(v) = dv for every vertex v and face f .

Let the platonic solid have p−vertices, q−edges and f faces.

By the Handshake Lemma for vertices we have

2q =
∑

v∈V (G)

deg(v) =
∑

v∈V (G)

dv = p · dv

Using Handshake Lemma for faces gives

2q = f · df

This gives p = 2
dv
· q, f = 2

df
· q.

By Euler’s formula we have p + f − q = 2.

This gives (
2
dv
· q + 2

df
· q − q

)
= 2

q

 2
dv

+ 2
df
− 1︸ ︷︷ ︸

must be positive

 = 2

We must have 2
dv

+ 2
df
− 1 > 0

We notice df ≥ 3, and similarly dv ≥ 3 (see note).
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Note: We should have added the assumption that deg(v) ≥ 3 for every vertex in the definition of a
platonic solid.

Case 1

dv = 3, df = 3

q

(
2
3 + 2

3 − 1
)

= q

(
1
3

)
= 2 =⇒ q = 6

We see that if dv ≥ 6, and df ≥ 3, then

2
dv

+ 2
df
− 1 ≤ 2

6 + 2
3 − 1 = 0

Hence we may assume 3 ≤ dv ≤ 5.

Similarly we may assume 3 ≤ df ≤ 5.

dv df
2

dv
+ 2

df
− 1 q p f

3 3 1
3 6 4 4

3 4 1
6 12 8 6

4 3 1
6 12 6 8

4 4 0 — — —
3 5 1

15 30 12 20
5 3 1

15 30 20 12
4 5 < 0 — — —
5 4 < 0 — — —
5 5 < 0 — — —

dv = 3, df = 3

dv = 3, df = 4

dv = 4, df = 3

dv = 5, df = 3

dodecahedron

dv = 3, df = 5

icosohedron

Fact

The planar dual of a Platonic solid is a platonic solid
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7.4 Non-Planar Graphs
Theorem

K5 is not a planar graph

Proof

Assume that it is planar and derive a contradiction.

We see p = |V (G)| = 5, q = |E(G)| = 10

f + p− 1 = f + 5− 10 = 2 =⇒ f = 7

If K5 is planar, then it would have 5 vertices, 10 edges, and 7 faces.

We see deg(f) ≥ 3 for all faces.

Hence by the handshaking lemma for faces, we have

20 = 2q =
∑
fi

deg(fi) ≥
7∑

i=1
3 = 21

This gives 20 ≥ 21, which is a contradiction.

Hence K5 is not planar.

Theorem

K3,3, the complete bipartite graph with |A| = |B| is not planar.

Proof

Assume that K3,3 is planar. This graph has p = 6 vertices and q = 9 edges. By Euler’s formula,
p + f − q = 2, this gives us f = 5 faces.

Because K3,3 is bipartite, all cycles (and hence all faces) have an even length (degree). Hence we have
deg(fi) ≥ 4 for i = 1, 2, . . . , 5

By the handshaking lemma for faces,

2 · q = 18
5∑

i=1
deg(fi) ≥

5∑
i=1

4 = 20

This is a contradiction. Hence K3,3 is not planar.

Theorem

Let G be a connected planar graph with p vertices and q edges. Then q ≤ 3p− 6
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Proof

Assume G is a connected planar graph. We know p + f − q = 2. We further know that deg(f) ≥ 3 for
all faces.

By Handshake Lemma

2q =
∑

i

deg(fi) ≥ 3 · f

This gives 3p + 3f − 3q = 6

=⇒ 3p + 2q − 3q ≥ 6
=⇒ 3p− 6 ≥ p, as required

What about a face of degree 2?

It is worth noting that the only connected planar graph (without loops or multiple edges) that has a face
of degree 2 is . "I always ignore this special case because I forget it exists" - Kevin.

This has p = 2, q = 1.

1 = q ≤ 3p− 6 = 0

So the theorem doesn’t hold for the degenerate case.

Theorem

Let G be a planar graph. Then there exists a vertex v ∈ V (G) such that deg(v) ≤ 5.

Proof

Assume G is a non-degenerate planar graph. If every vertex had deg(v) ≥ 6, then

2 · q =
∑

deg(vi) ≥ 6 · p

Hence 3p ≤ q ≤ 3p− 6, a contradiction.

7.5 Kuratowski’s Theorem
Definition

An edge subdivision of a graph is done by replacing an edge with a path of length ≥ 1.

Example

Fact

Let G2 be an edge subdivision of G1. Then G1 is planar if and only if G2 is planar.

Fact

Let H be a subgraph of G. If G is planar, then H is planar. If H is non-planar then G is non-planar.

Warning

If H is planar, we can assume nothing about G.

Let G = K3
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G H

Theorem (Kuratowski)

A connected graph is not planar if and only if it contains a subgraph that is an edge subdivision of K5
or K3,3.

Proof

We see an edge subdivision of K3,3 and K5 are non-planar. Hence if this is a subgraph, the original graph
is non-planar.

The other direction is beyond the scope of the course.

Example

K6 is not planar.

To see this, if we remove a single vertex and all edges attached to it, we get the subgraph K5.

Example

Consider the GHMS−graph on vertices {1, 2, 3, 4, 5, 6, 7}.

This is non-planar.

1 2 3 4 5 6 7

This has a K3,3 as a subgraph.

1

2

3

5

6

7

Hence this is non-planar.

7.6 Colouring and Planar Graphs
Definition

Let G be a graph. A k−colouring (of the vertices) is a map from V (G) to a set of size k such that
adjacent vertices are assigned different values.

Example
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5−colouring 4−colouring 3−colouring

This graph does not have 2−colouring.

Fact

A graph is 1−colourable if and only if it is 0−regular (i.e. no edges).

Fact

A graph is 2−colourable if and only if it is bipartite.

(Colour A one colour, and everything in B another colour).

Example

A cycle of odd length is 3−colourable

Example

Consider a planar graph.

In general, every planar graph can be 4−coloured.

One way to think of this problem is to colour different countries different colours such that if two countries
share a border, they are different colours.

The world map is (probably not) a planar map.

Borders of France

Brazil 730 km
Spain 646 km

Belgium 556 km
Suriname 556 km

Switzerland 525 km
Italy 476 km

Germany 418 km

Theorem
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Let G be a planar graph. Then G is 6−colourable.

Proof

We prove this by induction.

This is clearly true if G has less than or equal to 6 vertices. Assume this is true for up to p ≥ 6 vertices,
and let G be the planar map with p + 1 vertices.

As G is a planar graph, there exists a vertex of degree at most 5, say v.

Let G′ be the graph where we remove v and all edges to v.

Then G′ is a planar graph with p vertices. By induction it is 6 colourable. Colour it.

v

Apply this colouring to the original graph. We have 6−choices to colour v, and 5−neighbours that
restrict this choice.

Colour v anything that its neighbours are not.

This gives a 6−colouring of G.

Theorem

Let G be a planar graph. Then G is 5−colourable.

Proof

As before, we prove by induction. This is true for all G with 5 or fewer vertices. Assume true for graphs
with p ≥ 5 vertices, and let G be a planar graph with p + 1 vertices.

As G is a planar graph, there exists a vertex v with deg(v) ≤ 5. Choose this vertex.

Case 1 deg(v) ≤ 4

As before, we remove v and all edges to v, colour the new graph. Then use this colouring for G, choosing
any colour for v that it is not adjacent to (we have options).

Case 2 deg(v) = 5

Let its neighbours be labeled A, B, C, D, E.

Consider the subgraph on A, B, C, D, E and all edges from G.
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This subgraph is not K5 (As K5 is not planar). This gives that at least two vertices do not have an edge
between them. Say A and B.

Construct a new graph G′ where we remove A, B and v, and add a new vertex AB. If (u, v) ∈ E(G)
with v = A or v = B then (u, AB) ∈ E(G′).

v

C

B

DE

A AB

C

DE

This new graph is a planar graph. Hence by induction it has a 5−colouring. Colour it.

Take this colouring to colour the original graph.

We colour both A and B the colour assigned to AB (there is no edge between them).

We colour v to be anything A, B, C, D, E is not (of which there are at most 4 restrictions).

Theorem

Every planar graph is 4−colourable.

Step 1

Assume every face is a triangle.

Step 2

Break this into 633 cases.

Step 3

Ask a computer for help.

Step 4

Defend yourself from mathematicians that hate computers.

8 Matchings

8.1 Matching
Definition

Let G be a graph. A matching M is a 1−regular subgraph of G. Alternatively, M is a collection of edges
such that every vertex is incident to at most one edge.

Example

K6
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2

1

6

5

4

3

The matching is given by (1, 6), (2, 5), (3, 4). Every vertex is saturated.

Example

K6 (again)

2

1

6

5

4

3

The single edge (3, 6) is a (non-maximal) matching

3 and 6 are saturated, 1, 2, 4, 5 are unsaturated.

Definition

We say a vertex v is saturated by a matching M if it is incident to an edge in M . Otherwise it is
unsaturated.

Recall

For an edge (u, v), we say both u and v are incident to (u, v).

Definition

We say a matching is perfect if every vertex is structured.

The first example is perfect, the second example is not.

Example

K5 does not have a perfect matching. We see this because K5 has an odd number of vertices.

Example

The graph below does not have a perfect matching.

Example

Let G be a bipartite graph with partition A and B. If G has a perfect matching then |A| = |B|.

Proof

77



1241 MATH 239: Introduction to Combinatorics Jaiden Ratti

To see this, we see that every edge in M is incident to one vertex in A and one in B. So,

|A| = |B| = |M |

Definition

Let G be a graph with a matching M . We say a path in G is an alternating path if adjacent edges in
the path have one edge in M and one edge not in M .

Example

a

e

b

f

c

g

d

h

This matching is not a perfect matching (as both b and h are unsaturated). Some alternating paths
include

a−e− b

b− g−d

h− c−f − a−e− b

c−f

These paths could be odd or even length, starting or ending with edges in M or not in M .

Definition

We say an alternating path is augmenting if it starts and ends at an unsaturated vertex.

Example

A

C D

B

This has a (non-perfect) matching (a, c).

It has an augmenting path B−A−C−D. We can construct a new (larger) matching by removing from
M every edge in M and in the path, and add every edge not in M and in the path.

A

C D

B

This gives a larger matching.

Definition

We say a matching is maximal if there are no larger matchings.

Example
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This matching is maximal, but not perfect.

Fact

If there exists a perfect matching, then the perfect matching is maximal.

Theorem

A matching M is maximal if and only if there is no augmenting path.

Equivalently, a matching is not maximal if and only if there exists an augmenting path.

Algorithm to find maximal matching

1. Find an augmented path

2. Augment matching and repeat until we can’t find an augmenting path.

Example

This is a maximal matching.

Proof

Assume there exists an augmenting path. This allows us to create a larger matching using the augmenting
path. Hence M was not maximal.

Assume M is a matching that is not maximal. Let M ′ be a larger matching. Consider (M\M ′)∪(M ′\M).

M M ′

M \M ′ M ′ \M
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M \M ′ ∪M ′ \M

In this case, the path corresponds to an augmenting path in M .

This construction creates a number of paths that are all alternating paths. At least one of these paths
will be augmenting (Not advice, but worth thinking about).

8.2 Covers
Definition

A cover C is a set of vertices such that every edges has at least one end in C.

Example

a

e

b

f

c

g

d

h

Both {a, b, c, d} and {e, f, g, h} are covers.

Lemma

Let M be a matching of G and C be a cover of G. Then |M | ≤ |C|.

Proof

For each edge (u, v) ∈ M we must have either u ∈ C or v ∈ C. As matchings are disjoint, each edge
must contribute to a different c ∈ C. Hence |M | ≤ |C|.

Example

In the above, (a, c), (b, f), (c, g), (d, h) is a matching of size 4, and {a, b, c, d} and {e, f, g, h} are covers
of size 4.

This proves M is a maximal matching and C is a minimal cover.

Lemma

If |M | = |C|, then M is a maximal matching and C is a minimal cover.

Example

We need not have equality. Consider

Here |M | ≤ 1 < 2 ≤ |C| for all covers and all matchings.

It turns out (next topic), that if G is bipartite then we can achieve equality.
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8.3 König’s Theorem
Theorem

Let G be a bipartite graph, then the size of a maximal matching is equal to the minimal size of a cover.

Before proving this result we will first recall how to find a maximal matching.

Step 1 Find any matching

Step 2 Find an augmenting path and augment

Step 3 Repeat Step 2 as necessary

Step 4 If we cannot find an augmenting path we are done.

Note

1. Augmenting paths go from unsaturated vertices to unsaturated vertices

2. Augmenting paths are odd length

3. Odd length paths in bipartite graphs have one end in A and one end in B.

Example

a

e

b

f

c

g

d

h

A

B

UA = unsaturated vertices in A = {b, d}.

UB = unsaturated vertices in B = {f, h}.

X = vertices in A connected to UA by an alternating path = {b, a, c, d}

Y = vertices in B connected to UA by an alternating path = {e, f, g, h}

Notice UB ∩ Y = {f, h} hence there exists an augmenting path (say f − c− g − d). We can use this to
construct a better matching.

a

e

b

f

c

g

d

h

A

B

Repeat this process on the new graph

UA = {b}

UB = {h}

X = {b, d}

Y = {g}

Notice UB ∩ Y = {}, the empty set.

This tells us that M is a maximal matching.

Theorem

Let M be a maximal matching UA, UB , X, Y as before.

Let C = Y ∪ (A \X). Then C is a cover and |C| = |M |.

Looking at the graph from previous example.
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a

e

b

f

c

g

d

h

A

B

Notice we can rearrange the graph in the following way

b

g

d

e

a

f

c

h

A \X

B \ Y

X

Y

Observations

1. There are no edges from X to B \ Y (proved before)

2. There are no edges in M from Y to A \X

3. |Y | ≤ |X|

4. |A \X| ≤ |B \ Y |

Proof 2

Assume there is a matching from Y to A \X. Every vertex in Y has an alternating path to UA.

This path starts with an edge not in the matching. Hence any vertex connected to a vertex in Y by a
matching has an alternating path to UA. Hence it is in X. Hence not in A \X.

Proof of 3

Every vertex in Y is connected to a matching (since assuming maximal matching). All of this matching
must go to X (as they can’t go to A \X). Hence |Y | ≤ |X|.

Proof of 4

A similar argument shows |A \X| is less than or equal to |B \ Y |.

Every vertex in A \X is connected to M (otherwise in UA)

Hence |A \X| ≤ |B \ Y |

Last Part

|C| = |M |

We can partition the matching into two parts. Those from X to Y which has size |Y | and those from
A \X to B \ Y with size |A \X|.

Hence, this has the same size as the cover.

Example

a

f

b

g

c

h

d

i

e

j

UA = {a, b, c}

UB = {f, h, i}

X = {a, b, d, c}
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Y = {h, i, j}

path h− d− j − c.

a

f

b

g

c

h

d

i

e

j

UA = {a, b}

UB = {f, i}

X = {a, b, c, e}

Y = {g, h, i, j}

path i− e− j − d− h− b

a

f

b

g

c

h

d

i

e

j

UA = {a}

UB = {f}

X = {a, b}

Y = {h}

UB ∩ Y = ∅

a

h

b

f

c

g

d

i

e

j

X

Y

A \X

B \ Y

Note on König’s Theorem

• The process of creating X and Y is called the X − Y construction

• The course notes and other sections used X0 = unsaturated vertices.

• We use UA and UB for the unsaturated vertices in A and B.

I.e. X0 = UA ∪ UB

8.4 Applications of König’s Theorem
Hall’s Theorem

Let G be bipartite, with partitions A and B. If M is a matching, then |M | ≤ min(|A|, |B|)

(Every edge in the matching has one end in A and one end in B).

For some graphs, this is a strict inequality.

Question: When do we get equality?

Notation
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Let D ⊆ A. We define

N(D) = {b ∈ B : (a, b) ∈ E, a ∈ D}
= vertices incident to something in D

= neighbours of D

Example

D

N(D)

Theorem

Let G be bipartite (with respect to A and B). There exists a matching that saturates every vertex in A
if and only if for all D ⊆ A, |D| ≤ |N(D)|.

Example

a

h

b

f

c

g

d

i

e

j

X

Y

A \X

B \ Y

Notice if D = X = {a, b}

Then N(D) = {h} = Y

We have |D| = 2 > 1 = |N(D)|

As there exists a D with D > |N(D)|, there does not exist a matching saturating X.

Proof

Assume there exists a matching M which saturates X.

Take D ⊆ A to be any subset.

Every vertex a ∈ D is connected to some edge in the matching.

Every one of these edges is connected to a different vertex in B.

Every vertex in B connected to D by a matching in M is in N(D). Hence |D| ≤ |N(D)|.

Example

D

N(D)

Proof
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Assume that there does not exist a matching which saturates all of A. We wish to find a D such that
|D| > |N(D)|.

Let M be a matching of maximal size. There will be unsaturated vertices in A. I.e. UA ̸= ∅.

Construct X and Y as before. We have UA ≤ X, have X ̸= ∅.

Take D = X.

From Monday, there are no matchings from Y to A \X.

Further, there are no edges from X to B \ Y .

|N(D)| = |Y | = |C| − |A \X|
< |A| − |A \X| = |X| = |D|

X

Y

A \X

B \ Y

8.5 Perfect Matchings in Bipartite Graphs
Theorem

Let G be a k−regular bipartite graph with k ≥ 1. Then G has a perfect matching.

Recall

A perfect matching is a matching which saturates every vertex.

Observation 1 |A| = |B|

We see the number of edges in k · |A| and k · |B|. Hence |A| = |B|.

Proof

We will show for all D ⊆ A that |D| ≤ |N(D)|, which will prove the result.

Assume for a contradiction that there exists a D with |N(D)| < |D|. We count the edges from D to
N(D) in two different ways.

We see there are k · |D| edges from D to N(D) (as every vertex has k edges).

We see that we have at most k · |N(D)| edges from N(D) to D (as every vertex has k edges some of
which go to D).

Hence

k · |D| = #of edges from D to N(D)
= k · |N(D)| < k · |D|︸ ︷︷ ︸

by assumption

This is a contradiction. Hence there is a perfect matching.

Example 3−regular
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8.6 Edge-Colouring
Definition

Let G be a graph. We say it has a k-edge colouring if there is an assignment of k−colours to the edges
such that edges of the same colour never touch.

I.e. each colour is a matching.

Example

K5

This is a 5−edge colouring of K5

Exercise

Let G be a graph that is k−edge-colourable. Then deg(v) ≤ k for all v ∈ V (G).

Note

For any colour, the set of edges of that colour is matching (1−regular graph).

Theorem

Let G be bipartite, and let ∆ = maxv∈G deg(v). Then G has a ∆−edge colouring.

Method

1. Find a matching of maximal size that saturates all of v with deg(v) = ∆.

2. Colour this matching, remote it and repeat.

a

e

b

f

c

g

d

h

∆ = max deg(v) = 3

This includes {b, c, g}

Find a matching of maximal size that saturates {b, c, g}.
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a

e

b

f

c

g

d

h

Remove and repeat.

a

e

b

f

c

g

d

h

∆ = 2 includes {b, c, g}.

Remove and repeat.

a

e

b

f

c

g

d

h

∆ = 1 includes {b, c, f, g}

Thus we have,

a

e

b

f

c

g

d

h

If we can do step 1, then it is easy to see how step 2 can be used to find the ∆−edge-colouring.

Proof

Let ∆ = max deg(v) and K = {v : deg(v) = ∆}. Let M be a matching that is maximal and saturates
the maximal amount of K. If this matching saturates K we are done. Assume that there is some vertex
in K left unsaturated. We can assume that it is in A.

Construct

UA∩K = unsaturated vertices in A ∩K. Non-empty by assumption.

X = vertices with alternating paths to UA∩K starting in A.

Y = vertices with alternating paths to UA∩K starting in B.

Fact

All v ∈ X have deg(v) = ∆.
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Assume that it is not true. We have an alternating vertex from v, starting with an edge in M and ending
in UA∩K .

v deg ̸= ∆

We replace edges in this path so that those in M are not in M and those not in M are now in M .

This saturates more things in K. A contradiction.

Fact

If y ∈ Y , then there exists x ∈ X with (x, y) ∈M .

As this is a maximal matching, all vertices in y are not unsaturated. Hence they are connected to a
matching. Further, there are no matchings from Y to A \X (proved earlier). Hence they connect to X.

This tells us |Y | ≤ |X| in size.

Consider the set of edges from X to Y .

∆|Y | ≤ ∆|X| as |Y | ≤ |X|

=
∑
v∈X

deg(v) as all v ∈ X has deg(v) = ∆

≤
∑
v∈Y

deg(y) includes all edges from Y to X, plus some from Y to A \X

≤ ∆ · |Y | as all vertices have deg(v) ≤ ∆

Hence ∆|Y | ≤ ∆|X| ≤ ∆|Y |

Hence |X| = |Y |

As everything in Y has a matching to connecting in X, we get everything in X has a matching. Hence
K is saturated.
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